Wifi 802.11 n что значит. Какие бывают стандарты Wi-Fi и какой для смартфона лучше. Поддержка MIMO что это такое

14 сентября Институт инженеров электроники и электротехники (IEEE) наконец-то утвердил окончательную версию стандарта беспроводной связи WiFi 802.11n. Сказать, что процесс принятия спецификаций затянулся – не сказать ничего: устройства с поддержкой первой предварительной версии стандарта можно было купить ещё в конце 2006 года, но работали они не очень стабильно. Распространение получили устройства, поддерживающие вторую предварительную версию стандарта (draft 2.0), избавленную от большинства "детских болезней". В продаже они встречаются уже около двух лет, и на обилие проблем с беспроводной связью их обладатели не жалуются: работают – и работают. Причём довольно быстро и стабильно.

Чем новая версия любимого всеми "вайфая" лучше старой? Максимальная теоретическая скорость для стандарта 802.11b – 11 Мбит/с при частоте полосы 2,4 ГГц, для 802.11a – 54 Мбит/с при 5 ГГц, а для 802.11g – тоже 54 Мбит/с, но при 2,4 ГГц. У 802.11n частота полосы варьируется и может составлять как 2,4 ГГц, так и 5 ГГц, а предельная скорость достигает поражающих воображение 600 Мбит/с. Разумеется, в теории. На практике из 802.11n удается выжать "более приземлённые", но всё же впечатляющие 150 Мбит/с. Отметим также, что благодаря поддержке обоих частотных диапазонов достигается обратная совместимость и с 802.11a, и с 802.11b/g.

Улучшить скоростные показатели позволили несколько технологий. Во-первых, MIMO (Multiple Input Multiple Output), суть которой в оснащении устройств сразу несколькими передатчиками, работающими на одной частоте, и разделении потоков данных между ними. Во-вторых, разработчики задействовали технологию, позволяющую использовать не один, а два частотных канала шириной 20 MГц каждый. При необходимости они работают либо по отдельности, либо вместе, сливаясь в один широкий 40-мегагерцовый канал. Кроме того, в IEEE 802.11n применяется схема модуляции OFDM (ортогональное частотное мультиплексирование) – благодаря ей (если конкретно, то благодаря использованию 52 поднесущих, из которых 48 предназначаются непосредственно для передачи данных, а 4 – для пилотных сигналов) скорость передачи данных по одному пространственному потоку может достигать 65 Мбит/с. Всего таких потоков может быть от одного до четырёх в каждом из направлений.

Значительно улучшилась и ситуация с зонами покрытия и стабильностью приема. Помните известную пословицу "Одна голова - хорошо, а две - лучше"? Так вот, здесь действует тот же принцип: передатчиков теперь несколько, антенн тоже, а значит, и ловить сеть всё это хозяйство будет лучше – оказаться вне зоны точки доступа, расположенной на соседнем этаже, скорее всего уже не получится.

Ситуация в России

Осенью Научно-исследовательский институт радио (НИИР) подготовит нормы применения аппаратуры для эксплуатации в России беспроводного стандарта связи 802.11n. Сейчас поддерживающее его оборудование допустимо использовать только в интранет-сетях, а после принятия НПА его будет возможно использовать и в сетях общего пользования.

По мнению Дмитрия Ларюшина, директора по технической политике компании Intel в России, утверждение стандарта институтом IEEE безусловно сыграет положительную роль в разработке и внедрении регуляторных правил в Российской Федерации, что откроет дорогу для импорта и использования оборудования 802.11n в нашей стране. Стоит отметить, что протокол 11n в версии D2.0 поддерживается WiFi-продуктами компании Intel начиная с 2007 года, но, соблюдая принятые в России правила ввоза и использования радиоэлектронных средств, опцию 11n приходилось отключать. Начиная со следующего года, при условии положительного решения ГКРЧ и внедрении НПА на данную технологию, на российский рынок будут поставляться продукты Intel c поддержкой WiFi 11n в окончательной редакции стандарта.

Далеко не все производители оборудования придерживаются буквы закона: некоторые компании уже давно поставляют в Россию сетевое оборудование, поддерживающее стандарт 802.11n. Ничто не мешает производителям продавать на российском рынке ноутбуки, оборудованные WiFi-модулями с поддержкой 802.11n, которые выпущены "Интелом"

При покупке 5ГГц роутера слово DualBand (Двухдиапазонный) отвлекает наше внимание от более важной сути, стандарта Wi-Fi, использующего несущую 5ГГц. В отличие от стандартов использующих несущую 2.4ГГц, уже давно знакомых и понятных, 5ГГц устройства могут использоваться в комплексе с 802.11n или 802.11ac стандартами (в дальнейшем AC стандарт и N стандарт).

Группа стандартов Wi-Fi IEEE 802.11 эволюционировала довольно динамично, от IEEE 802.11a, который обеспечивал скорости до 2 Мбит/с , через 802.11b и 802.11g, которые давали скорости до 11 Мбит/с и 54 Мбит/с соответственно. Затем появился стандарт 802.11n или просто n-стандарт. N-стандарт был настоящим прорывом, так как теперь через одну антенну можно было передавать трафик на немыслимой по тем временам скорости 150Мбит . Это достигалось за счёт использования передовых технологий кодирования (MIMO), более тщательного учёта особенностей распространения ВЧ волн, технологии удвоенной ширины канала, не статичный защитный интервал определяемый таким понятием как индекс модуляции и схемы кодирования.

Принципы функционирования 802.11n

Уже привычный 802.11n может применяться в одном из двух диапазонов 2.4ГГц и 5.0 ГГц. На физическом уровне кроме усовершенствованной обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны , через каждую антенну можно пропустить до 150Мбит/с , т.е. это теоретически 600Мбит. Однако, учитывая, что одновременно антенна работает либо на приём либо на вещание, то скорость передачи данных в одну сторону не превысит 75Мбит/с на антенну.

Многоканальный вход/выход (MIMO)

Впервые поддержка этой технологии появилась в стандарте 802.11n. MIMO расшифровывается как Multiple Input Multiple Output, что в переводе - многоканальный вход многоканальный выход.

С помощью технологии MIMO реализована способность одновременного приема и передачи нескольких потоков данных через несколько антенн, а не одну.

Стандарт 802.11n определяет различные конфигурации антенн от "1х1" до "4х4". Также возможны несиметричные конфигурации, например, "2х3", где первое значение означает количество передающих, а второе количество принимающих антенн.

Очевидно, максимальную скорость приёма передачи возможно достичь только при использовании схемы "4х4". На самом деле количество антенн не увеличивает скорость само по себе, однако это позволяет применять различные усовершенствованные методы обработки сигналов, которые автоматически выбираются и применяются устройством, в том числе и исходя из конфигурации антенн. Например, схема "4х4" с модуляцией 64-QAM обеспечивает скорость до 600 Мбит/с, схема "3х3" и 64-QAM обеспечивает скорость до 450 Мбит/с, а схемы "1х2" и "2х3" до 300 Мбит/с.

Ширина полосы пропускания канала 40 МГц

Особенностью стандарта 802.11n является удвоенная ширина 20МГц канала, т.е. 40 МГц .Возможность поддержки 802.11n устройствами работающих на несущих 2.4ГГц и 5ГГц. В то время как стандарт 802.11b/g работает только на 2.4 ГГц, а 802.11a работает на частоте 5 ГГц. В полосе частот 2.4 ГГц для беспроводных сетей доступны всего 14 каналов, из них первые 13 разрешены в СНГ, с интервалами 5 МГц между ними. Устройства использующие стандарт 802.11b/g используют каналы шириной 20 МГц. Из 13 каналов 5 пересекающихся. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Т.е. не пересекающимися будут только три канала на полосе 20 МГц: 1, 6 и 11.

Режимы работы 802.11n

Стандарт 802.11n предусматривает работу в трёх режимах: High Throughput (читый 802.11n), Non-High Throughput (полная совместимость с 802.11b/g) и High Throughput Mixed (смешанный режим).

High Throughput(НТ) - режим с высокой пропускной способностью.

Точки доступа 802.11n используют режим High Throughput. Данный режим абсолютно исключает совместимость с предыдущими стандартами. Т.е. усройства не поддерживающие n-стандарт подключиться не смогут. Non-High Throughput(Non-HT) - режим с невысокой пропускной способностью Чтобы устаревшие устройства могли подключиться, все кадры отправляются в формате 802.11b/g. В этом режиме используется ширина канала 20 МГц для обеспечения обратной совместимости. При использовании этого режима данные передаются со скоростью, поддерживаемой самым медленным устройством, подключённым к данной точке доступа (или Wi-Fi роутеру).

High Throughput Mixed - смешанный режим с высокой пропускной способностью. Смешанный режим позволяет устройству работаь одновременно по стандарту 802.11n и 802.11b/g. Обеспечит обратную совместимость устаревших устройств, и устройств использующих стандарт 802.11n. Однако, пока старое устройство осуществляет прием-передачу данных, устаройство поддерживающее 802.11n ждёт своей очереди, и это сказывается на скорости. Также очевидно, что, чем больше трафика будет идти по стандарту 802.11b/g, тем меньшую производительность сможет показать 802.11n устройство в режиме High Throughput Mixed.

Индекс модуляции и схемы кодирования (MCS)

Стандарт 802.11n определяет понятие "Индекс модуляции и схемы кодирования"(Modulation and Coding Scheme). MCS - это простое целое число, присваиваемое варианту модуляции (всего возможно 77 вариантов). Каждый вариант определяет тип модуляции радиочастоты (Type), скорость кодирования (Coding Rate), защитный интервал (Short Guard Interval) и значения скорости передачи данных. Сочетание всех этих факторов определяет реальную физическую (PHY) скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с (данная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n).

Некоторые значения индекса MCS определенны и показаны в следующей таблице:


Расшифруем значения некоторых параметров.

Короткий защитный интервал SGI (Short Guard Interval) определяет интервал времени между передаваемыми символами. В устройствах стандарта 802.11b/g используется защитный интервал 800 нс, а в устройствах 802.11n есть возможность использования паузы всего в 400 нс. Короткий защитный интервал (SGI) повышает скорость передачи данных на 11 процентов. Чем короче этот интервал тем большее количество информации можно передать в единицу времени, однако, при этом точность определения символов падает, поэтому разработчиками стандарта подобрано оптимальное значение этого интервала.

MCS значения от 0 до 31 определяют тип модуляции и схемы кодирования, которые будут использоваться для всех потоков. MCS значения с 32 по 77 описывают смешанные комбинации, которые могут быть использованы для модуляций от двух до четырех потоков.

Точки доступа 802.11n должны поддерживать MCS значения от 0 до 15, в то время как 802.11n станции должны поддерживать MCS значения от 0 до 7. Все другие значения MCS, в том числе связанные с каналами шириной 40 МГц, коротким защитным интервалом (SGI), являются опциональными, и могут не поддерживаться.

Особенности AC стандарта

В реальных условиях ни одному стандарту не удалось добиться максимума своей теоретической производительности, поскольку на сигнал влияет множество факторов: электромагнитные помехи от бытовой техники и электроники, препятствия на пути сигнала, отражения сигнала, и даже магнитные бури. Из-за этого производители и продолжают работать над созданием еще более эффективных вариантов стандарта Wi-Fi, более приспособленного не только для домашнего, но и активного офисного использования, а также построения расширенных сетей. Благодаря этому стремлению, совсем недавно, родилась новая версия IEEE 802.11 — 802.11ac (или просто AC стандарт ).

Принципиальных отличий от N в новом стандарте не слишком много, но все они направлены на увеличение пропускной способности беспроводного протокола. В основном разработчики пошли путём улучшения преимуществ стандарта N. Самое заметное — расширение каналов MIMO с максимальных трех до восьми. Это значит, что вскоре мы сможем увидеть в магазинах беспроводные маршрутизаторы с восемью антеннами. А восемь антенн — это теоретическое удвоение пропускной способности канала до 800 Мбит/с, это не говоря о возможных шестнадцатиантенных устройствах.

Устройства стандартов 802.11abg работали на каналах шириной пропускания 20 МГц, а чистый N предполагает каналы шириной 40 МГц. В новом стандарте предусмотренно, что AC роутеры имеют каналы на 80 и 160 МГц, а это означает удвоение и учетверение канала удвоенной ширины.

Стоит отметить предусмотренную в стандарте улучшенную реализацию технологии MIMO — технологию MU-MIMO. Старые версии протоколов, совместимые со стандартом N, поддерживали полудуплексную передачу пакетов от устройства к устройству. То есть в момент, передачи пакета одним устройством, другие устройства могут работать только на прием. Соответственно, если одно из устройств подключается к роутеру, используя старый стандарт, тогда и другие будут работать медленнее из-за увеличившегося времени передачи пакетов устройству использующему старый стандарт. Это может быть причиной понижения качества характеристик беспроводной сети в случае, если к ней подключено много таких устройств. Технология MU-MIMO решает эту проблему, создавая многопоточный канал передачи, при использовании которого остальные устройства не ждут своей очереди. В то же время AC роутер должен быть обратносовместим с предыдущими стандартами.

Однако, конечно же есть и ложка дёгтя. В настоящее время по прежнему абсолютное большинство ноутбуков, планшетов, смартфонов не поддерживают не только AC стандарт Wi-Fi, а даже не умеют работать на несущей 5ГГц. Т.е. и 802.11n на 5ГГц им недоступна. Также сами AC роутеры и точки доступа могут в несколько раз превышать по стоимости роутеры ориентированные на использование стандарта 802.11n.

Всем привет! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера , или при покупке устройства (характеристики Wi-Fi , например 802.11 b/g) . И в чем отличие между этими стандартами.

Сейчас постараемся разобраться что это за настройки и как их сменить в настройках маршрутизатора и собственно для чего изменять режим работы беспроводной сети.

Значит b/g/n – это режим работы беспроводной сети (Mode) .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень):
IEEE 802.11d. IEEE 802.11e. IEEE 802.11i. IEEE 802.11j. IEEE 802.11h и IEEE
802.11r - параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д.;
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы. Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции , в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;

  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;

  • высокая скорость передачи;

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн. Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

В течение почти двух десятилетий с момента появления первых стандартов беспроводной связи 802.11, появилось пять универсальных: 802.11a, 802.11b, 802.11g, 802.11n и 802.11ac. С каждым новым стандартом, скорости сети Wi-Fi только возрастали.

Оказалось, что это не предел: на смену им идёт новый стандарт Wi-Fi – 802.11 ax (или 11AX), который ориентирован на улучшение производительности Wi-Fi в средах с большим объемом трафика данных, а также с частыми перегрузок сети.

Wi-Fi 802.11 ax – увеличение скорости и емкости

Если Вы когда-нибудь пробовали подключиться к Wi-Fi на концерте или в аэропорту, конечно, Вы в знаете сколько ограничений имеют сети в столь плотном окружении. Избыток пользователей, которые пытаются получать беспроводной сигнал, приводит к слишком большой нагрузке на сети, что снижает её производительность и стабильность сигнала. Стандарт 11AX решает эту проблему, предлагая лучшую систему маршрутизации данных там, где это необходимо.

Основная цель предыдущих стандартов беспроводных сетей было достижение максимальной теоретической скорости . И только последний стандарт – 802.11 ac – расширял возможности для подключения множества антенн.

Wi-Fi 11AX по-прежнему делит полосу частот на множество каналов, используя технологию OFDMA (Orthogonal Frequency Division Multiple Access). Но, вместе с тем, 11AX может значительно повышает скорость беспроводной сети , лучше управлять её пропускной способности, особенно при высокой «интенсивности движения» и перекрывающихся сетях.

Какая скорость в сети Wi-Fi 11AX

Максимальная скорость одного потока 802.11ac – это около 866 Мб/сек, в то время как один поток 802.11ax достигает 1,2 Гб/сек . Это означает возможность потоковой передачи видео Ultra-HD 4K с нулевой задержкой, загрузку целых пакетов программного обеспечения в мгновение ока и возможность интеграции всей семьи «умных» устройств.

Скорости, которые можно получить, зависят, конечно, от сети и оборудования, которое она использует. Большая профессиональная сеть, которая уже имеет мощный сигнал, очевидно, будет обладать значительно большей скорости, чем сети в небольших компаниях. Так или иначе, можно достичь четырехкратного увеличения текущего сигнала, что означает значительное увеличение общей емкости сети.

Нижний предел скорости? Помимо улучшения производительности и дальности, 11AX разработана в целях повышения емкости диапазонов частот 2,4 Ггц и 5 Ггц в различных средах – от дома до школы, предприятия, аэропорта, стадиона и др. Не имеет ни малейшего значения, где Вы будете использовать сеть Wi-Fi, Вы сможете достичь увеличения текущей скорости в 4 раза.

Эффективность стандарта Wi-Fi 11AX

Скорость не является единственным важным фактором. 11AX направлена также на реализацию механизмов, которые обеспечивают согласованный и надежный поток данных для большего числа пользователей. Это означает повышение производительности и сохранение соединения даже в случае большого объема сетевого трафика.

Стандарт 11AX работает как на частоте 2,4, так и 5 Ггц, сохраняя при этом существующие пропускные способности каналов и, одновременно, увеличивая емкость сети и расширяя способы передачи данных на несколько устройств.

Стандарт 11AX также поддерживает ортогональный многократный доступ с разделением частот (OFDMA) – технология, созданная для улучшения пропускной способности мобильных сетей LTE .

В её нынешнем применении, каждый раз, когда маршрутизатор передает данные на устройство, он использует всю ширину полосы пропускания в канале, независимо от типа данных или количества информации, которые активно загружаются. Благодаря OFDMA эти каналы можно разделить, что увеличивает количество данных, которые можно одновременно передавать и принимать.

Кроме того, новый стандарт 802.11 ax позволяет планировать время «пробуждения», когда связь разрешена (что снижает нагрузку). 11AX поддерживает не только кодирование 1024QAM, для передачи большего количества единиц информации на символ, но и длинные символы OFDM для большей пропускной способности канала и меньших помех.

Особенности и преимущества Wi-Fi 11AX

Большинство пользователей Wi-Fi понимает, что подключение нескольких устройств снижает пропускную способность сети, в результате чего возникают замедления, не нужные кэширования и обрывы связи.

Новый стандарт, который также называется High-Efficiency Wireless (HEW), обеспечивает ещё один уровень управления Wi-Fi .

Стандарт включает в себя следующие основные функции:

  • Обратная совместимость с предыдущими стандартами беспроводных сетей Wi-Fi (802.11 a/b/g/n/ac)
  • Возможность работы на диапазонах 5 Ггц и 2,4 Ггц одновременно (а не одного или другого, как и в предыдущих стандартах).
  • Ширина канала 2/5/10 Мгц для диапазонов шириной более 20 Мгц.
  • Повышенная пропускная способность и производительность:
    • В 1,5 раза быстрее, чем 802.11 ac
    • В 3,8 раза быстрее, чем 2,4 Ггц 802.11 n
  • Большая пропускная способность на объектах с высокой плотностью пользователей (например, на стадионах)
  • До 8 раз быстрее, чем устройства без MU-MIMO, благодаря использованию ссылок верхнего и нижнего уровня (DL/UL) MU-MIMO
  • На 20% больше эфирного времени с маршрутизатора, что означает, что можно передавать больше данных
  • Улучшенное управление питанием для увеличения срока службы батареи
  • Color BSS – другими словами, любая сеть будет получать свой цвет, благодаря чему их легко различить

Когда запуск стандарта 11AX

В связи с тем, что Wi-Fi 11AX повышает среднюю скорость передачи данных в пересчете на одного пользователя, лучше всего этот стандарт подходит для сред с высокой плотностью, таких как гостиницы, многоквартирные дома и кампусы.

Когда устройства многих пользователей подключены к одной сети, то им приходиться конкурировать за имеющиеся ресурсы и передавать данные последовательно, по одному. Благодаря 11AX несколько устройств могут одновременно передавать данные с помощью той же частоты и той же сети.

То есть Wi-Fi в стандарте 11AX – это не только увеличение скорости сети. Этот стандарт повышает производительность и устраняет проблемы, вызванные переполнением и перегрузкой сети Wi-Fi.

Протокол беспроводной связи Wi-Fi (Wireless Fidelity – беспроводная точность) был разработан еще в 1996 году. Изначально он предназначался для построения локальных сетей, но наибольшую популярность приобрел, как эффективный метод соединения с интернетом смартфонов и других портативных устройств.

За 20 лет одноименный альянс разработал несколько поколений соединения, внедряя с каждым годом более скоростные и функциональные его обновления. Они описываются стандартами 802.11, издаваемыми IEEE (Институт инженеров электротехники и электроники). В группу входит несколько версий протокола, отличающихся скоростью передачи данных и поддержкой дополнительных функций.

Самый первый стандарт Wi-Fi не имел буквенного обозначения. Поддерживающие его устройства обмениваются данными на частоте 2,4 ГГц. Скорость передачи информации составляла всего 1 Мбит/с. Также существовали девайсы с поддержкой скорости до 2 Мбит/с. Он активно использовался всего 3 года, после чего был усовершенствован. Каждый последующий стандарт Wi-Fi обозначается буквой после общего номера (802.11a/b/g/n и т.д.).

Одно из первых обновлений стандарта Wi-Fi, вышедшее в 1999 году. Благодаря удвоению частоты (до 5 ГГц) инженерам удалось добиться теоретических скоростей до 54 Мбит/с. Широкого распространения он не получил, так как сам по себе несовместим с другими версиями. Устройства, поддерживающие его, для работы в сетях на 2,4 ГГц должны иметь двойной приемопередатчик. Смартфоны с Wi-Fi 802.11a распространены слабо.

Стандарт Wi-Fi IEEE 802.11b

Второе раннее обновление интерфейса, вышедшее параллельно с версией a. Частота осталась прежней (2,4 ГГц), но скорость увеличили до 5,5 или 11 Мбит/с (в зависимости от устройства). До конца первого десятилетия 2000-х годов это был наиболее распространенный стандарт для беспроводных сетей. Совместимость с более старой версией, а также достаточно большой радиус покрытия, обеспечили ему популярность. Несмотря на вытеснение новыми версиями, 802.11b поддерживается практически всеми современными смартфонами.

Стандарт Wi-Fi IEEE 802.11g

Новое поколение протокола Wi-Fi было представлено в 2003 году. Разработчики оставили частоты передачи данных прежними, благодаря чему стандарт оказался полностью совместимым с предшествующим (старые устройства работали со скоростью до 11 Мбит/с). Скорость передачи информации возросла до 54 Мбит/с, что было достаточно вплоть до недавнего времени. Все современные смартфоны работают с 802.11g.

Стандарт Wi-Fi IEEE 802.11n

В 2009 году вышло масштабное обновление стандарта Wi-Fi. Новая версия интерфейса получила существенное увеличение скорости (до 600 Мбит/с), сохранив совместимость с предшествующими. Для возможности работы с оборудованием 802.11a, а также борьбы с перегруженностью диапазона 2,4 ГГц, была возвращена поддержка частот 5 ГГц (параллельно 2,4 ГГц).

Были расширены возможности конфигурирования сети и увеличено количество поддерживаемых одновременно соединений. Появились возможность связи в многопоточном режиме MIMO (параллельная передача нескольких потоков данных на одной частоте) и объединение двух каналов для связи с одним устройством. Первые смартфоны с поддержкой этого протокола вышли в 2010 году.

Стандарт Wi-Fi IEEE 802.11ac

В 2014 году был утвержден новый стандарт Wi-Fi IEEE 802.11ac. Он стал логичным продолжением 802.11n, предоставляющим десятикратный рост скорости. Благодаря возможности объединения до 8 каналов (по 20 МГц каждый) одновременно – теоретический потолок увеличился до 6,93 Гбит/с. что в 24 раза быстрее, чем 802.11n.

От частоты 2,4 ГГц было решено отказаться, в силу загруженности диапазона и невозможности объединения более 2 каналов. Стандарт Wi-Fi IEEE 802.11ac работает в диапазоне 5 ГГц и обратно совместим с устройствами 802.11n (с частотой 2,4 ГГц), но работа с более ранними версиями не гарантируется. Сегодня еще не все смартфоны поддерживают его (к примеру, поддержки нет у многих бюджетников на MediaTek).

Другие стандарты

Существуют версии IEEE 802.11, маркированные другими буквами. Но они или вносят небольшие поправки и дополнения к перечисленным выше стандартам, или добавляют специфические функции (вроде возможности взаимодействия с другими радиосетями или безопасность). Выделить стоит 802.11y, использующий нестандартную частоту 3,6 ГГц, а также 802.11ad, рассчитанный на диапазон 60 ГГц. Первый создан для обеспечения дальности связи до 5 км, за счет использования чистого диапазона. Второй (он также известен как WiGig) – предназначен для обеспечения максимальной (до 7 Гбит/с) скорости связи на сверхмалых расстояниях (в пределах комнаты).

Какой стандарт Wi-Fi для смартфона лучше

Все современные смартфоны оборудованы модулем Wi-Fi, рассчитанным на работу с несколькими версиями 802.11. Как правило, поддерживаются все взаимно совместимые стандарты: b, g и n. Однако работа с последним нередко может быть реализована только на частоте 2,4 ГГц. Устройства, которые способны работать в сетях 802.11n 5 ГГц, также отличаются поддержкой 802.11a, как обратно совместимого.

Рост частоты способствует увеличению скорости обмена данными. Но, вместе с тем, уменьшается длина волны, ей сложнее проходить сквозь препятствия. Из-за этого теоретическая дальность связи 2,4 ГГц будет выше, чем у 5 ГГц. Однако на практике ситуация обстоит немного иначе.

Частота 2,4 ГГц оказалась свободной, поэтому бытовая электроника использует именно ее. Помимо Wi-Fi, в этом диапазоне работают Bluetooth-устройства, приемопередатчики беспроводных клавиатур и мышек, в нем же излучают магнетроны СВЧ-печей. Поэтому в местах, где функционирует несколько сетей Wi-Fi, количество помех нивелирует преимущество в дальности. Сигнал будет ловиться и за сотню метров, но скорость окажется минимальной, а потери пакетов данных – большими.

Диапазон 5 ГГц более широк (от 5170 до 5905 МГц), меньше загружен. Поэтому волны хуже преодолевают препятствия (стена, мебель, тело человека), зато в условиях прямой видимости обеспечивают более устойчивую связь. Неспособность эффективно преодолевать стены оборачивается преимуществом: вы не сможете поймать соседский Wi-Fi, зато и вашему роутеру или смартфону он мешать не будет.

Однако, следует помнить, что для достижения максимальной скорости – необходим и роутер, работающий с таким же стандартом. В остальных случаях получить больше 150 Мбит/с все равно не выйдет.

Многое зависит от роутера и его типа антенны. Антенны адаптивного типа разработаны так, что они определяют местонахождение смартфона и подают на него направленный сигнал, достающий дальше, чем у других типов антенн.

Также вам понравятся:



Возможности настройки смартфона через инженерное меню


Top