Реферат: Применение полупроводниковых приборов. Правила монтажа и эксплуатации полупроводниковых приборов 1 правила эксплуатации полупроводниковых приборов

Использование: в области изготовления полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред, может быть использовано при сборке диодов Шоттки и биполярных транзисторов путем пайки полупроводниковых кристаллов к корпусам припоями на основе свинца. Сущность изобретения: способ сборки полупроводниковых приборов заключается в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370°С. Новым в способе является то, что полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов приборов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Техническим результатом изобретения является повышение надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшение смачивания припоем соединяемых поверхностей, повышение производительности сборочных операций за счет групповой пайки кристаллов к корпусам. 2 ил.

Изобретение относится к изготовлению полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред. Оно может быть использовано при сборке диодов Шоттки и биполярных транзисторов путем пайки полупроводниковых кристаллов к корпусам припоями на основе свинца. Существуют различные способы пайки полупроводниковых кристаллов к корпусу. Известен способ сборки мощных транзисторов кассетным методом, по которому ножка транзистора размещается на направляющих в кассете, а между кристаллом и корпусом размещается навеска припоя, при этом пайка осуществляется в конвейерной печи с восстановительной средой без использования флюсов. Кассета обеспечивает точную ориентацию кристалла относительно ножки прибора и исключает его смещение в процессе пайки. Недостатком известного способа является достаточно высокая трудоемкость изготовления полупроводниковых приборов. Кроме того, наличие оксидных пленок на соединяемых поверхностях ухудшает смачивание и капиллярное течение припоя в соединительном зазоре. Известен способ пайки микрополосковых устройств низкотемпературными припоями без применения флюсов, при котором паяемые поверхности предварительно покрывают металлами или сплавами с температурой плавления, близкой к температуре плавления припоя, но выше ее, а в момент расплавления припоя одной из паяемых деталей сообщают низкочастотные колебания. Основным недостатком указанного способа является низкая производительность данной сборочной операции, т.к. пайка осуществляется дискретно. Наиболее близким к заявляемому способу по технической сущности является способ сборки полупроводниковых приборов , заключающийся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который затем помещают навеску припоя и кристалл. Недостатком данного способа является высокая трудоемкость сборочных операций и низкий процент выхода годных приборов. Кроме того, данный способ не обеспечивает предварительной ориентации и фиксации кристалла относительно корпуса, в результате чего возможны разворот и смещение кристалла еще до начала процесса пайки. Более того, при пайке необходима высокая температура нагрева, что предъявляет определенные требования к кристаллу. Особенно следует отметить наличие непропаев в паяном шве, что способствует увеличению теплового и электрического сопротивления контакта полупроводникового кристалла с корпусом. Поэтому этот способ сборки полупроводниковых приборов является низкоэффективным (или неэффективным), особенно при пайке полупроводниковых кристаллов к корпусам изделий силовой электроники. Задача, на решение которой направлено заявляемое решение, - это повышение надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшение смачивания припоем соединяемых поверхностей, повышение производительности сборочных операций за счет групповой пайки кристаллов к корпусам. Эта задача достигается тем, что в способе сборки полупроводниковых приборов, заключающемся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370 o C, с целью повышения надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристаллов со структурами, улучшения смачивания припоем соединяемых поверхностей и повышения производительности сборочных операций за счет групповой пайки кристаллов к корпусам, полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Сопоставимый анализ с прототипом показывает, что заявляемый способ отличается от известного тем, что с целью повышения надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшения смачивания припоем соединяемых поверхностей и повышения производительности сборочных операций за счет групповой пайки кристаллов к корпусам полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Таким образом, заявляемый способ сборки полупроводниковых приборов соответствует критерию "новизна". Сравнение заявляемого способа с другими известными способами из известного уровня техники, также не позволило выявить в них признаки, заявляемые в отличительной части формулы. Сущность изобретения поясняется чертежами, на которых схематически изображены: на фиг. 1 - схема сборки и пайки полупроводниковых кристаллов к корпусам, вид сбоку; на фиг. 2 - фрагмент сборки и пайки одного кристалла к корпусу, вид сбоку. Способ сборки полупроводниковых приборов (фиг. 1 и 2) реализуется по схеме, содержащей основание 1, соединенное с вакуумным насосом. На основании закреплена вакуумная присоска 2, в ячейках которой фиксируются коллекторной поверхностью вверх полупроводниковые кристаллы 3 с припоем 4 на паяемой поверхности. На кристаллах размещают корпуса приборов 5. V-образные электроды 6 жестко закреплены в кронштейне 7, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом. Для равномерного нагрева всей площади кристалла при пайке размеры рабочей площади электрода должны быть на 0,6-1,0 мм больше каждой из сторон кристалла. Нагрев корпуса, кристалла и припоя до температуры пайки осуществляется за счет тепла, выделяемого рабочей площадкой V-образного электрода при прохождении через него импульса тока. Для разрушения оксидных пленок и активации соединяемых поверхностей кристалла и корпуса в момент расплавления припоя кристаллы 3 через вакуумную присоску 2 и основание 1 подвергаются воздействию ультразвуковых колебаний в направлении, параллельном паяному шву от ультразвукового концентратора 8. Давление на каждый кристалл осуществляется массой корпуса и кронштейна с электродами. Примером сборки полупроводниковых приборов может служить сборка диодов Шоттки. На коллекторную поверхность полупроводникового кристалла в составе пластины по известной технологии последовательно наносят следующие пленки: алюминия - 0,2 мкм, титана - 0,2-0,4 мкм, никеля - 0,4 мкм, а для пайки - припой, например ПСр2,5 толщиной 40-60 мкм. Затем полупроводниковую пластину разделяют на кристаллы. Металлическую пластину, состоящую из 10 корпусов 5 типа ТО-220, покрывают по известной технологии гальваническим никелем толщиной 6 мкм. Процесс сборки диодов Шоттки заключается в следующем: кристаллы 3 коллекторной поверхностью вверх фиксируются в ячейках вакуумной присоски 2, включается вакуумный насос, и за счет разности давлений кристаллы прижимаются к стенкам вакуумной присоски; пластина с корпусами приборов 5 размещается на кристаллах; кронштейн 7 с электродами 6 совмещают с контактными площадками корпусов в местах их пайки с кристаллами 3. При пайке кронштейн 7 с электродами 6 прижимает пластину из корпуса 5 к кристаллам 3. Через электроды, соединенные электрически последовательно друг с другом, пропускается импульс тока. Тепло от рабочей площадки электрода передается корпусам и далее кристаллам, разогревая припой до температуры пайки. В это время кристаллы подвергаются воздействию ультразвуковых колебаний в направлении, параллельном паяному шву от ультразвукового концентратора 8. Это способствует разрушению оксидных пленок и улучшению смачивания припоем соединяемых поверхностей кристалла и корпуса. Через заданное время отключается ток, и после кристаллизации припоя образуется качественное паяное соединение. Сжимающее усилие кристалла к корпусу при пайке задается массой корпуса и кронштейна с электродами. Так как при импульсной пайке происходит нагрев кристалла через корпус, то коллекторная поверхность нагревается до температуры пайки, а противоположная поверхность кристалла со структурами имеет температуру нагрева значительно ниже, чем коллекторная. Этот фактор способствует повышению надежности полупроводниковых приборов. Таким образом, использование предлагаемого способа сборки полупроводниковых приборов обеспечивает по сравнению с существующими способами следующие преимущества. 1. Повышается надежность полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами. 2. Улучшается смачивание припоем соединяемых поверхностей. 3. Повышается производительность сборочных операций за счет групповой пайки кристаллов к корпусам. Источники информации 1. Сборка мощных транзисторов кассетным методом /П.К. Воробьевский, В.В. Зенин, А. И. Шевцов, М.М. Ипатова//Электронная техника. Сер. 7. Технология, организация производства и оборудование. - 1979.- Вып. 4.- С. 29-32. 2. Пайка микрополосковых устройств низкотемпературными припоями без применения флюсов / В.И. Бейль, Ф.Н. Крохмальник, Е.М. Любимов, Н.Г. Отмахова//Электронная техника. Сер.7. Электроника СВЧ.- 1982.- Вып. 5 (341).- С. 40. 3. Яковлев Г.А. Пайка материалов припоями на основе свинца: Обзор.- М.: ЦНИИ "Электроника". Сер. 7. Технология, организация производства и оборудование. Вып. 9 (556), 1978, с. 58 (прототип).

Формула изобретения

Способ сборки полупроводниковых приборов, заключающийся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370°С, отличающийся тем, что полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов приборов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами.

Электрический монтаж радиокомпонентов должен обеспечивать надежную работу аппаратуры, приборов и систем в условиях механических и климатических воздействий, указанных в ТУ на данный вид РЭА. Поэтому при монтаже полупроводниковых приборов (ПП), интегральных схем (ИС) радиокомпонентов на печатные платы или шасси аппаратуры должны соблюдаться следующие условия:

  • надежный контакт корпуса мощного ПП с теплоотводом (радиатором) или шасси;
  • необходимая конвекция воздуха у радиаторов и элементов, выделяющих большое количество теплоты;
  • удаление полупроводниковых элементов от элементов схемы, выделяющих при работе значительное количество теплоты;
  • защита монтажа, расположенного вблизи съемных элементов, от механических повреждений при эксплуатации;
  • в процессе подготовки и проведения электрического монтажа ПП и ИС механические и климатические воздействия на них не должны превышать значений, указанных в ТУ;
  • при рихтовке, формовке и обрезке выводов ПП и ИС участок вывода около корпуса должен быть закреплен так, чтобы в проводнике не возникали изгибающие или растягивающие усилия. Оснастка и приспособления для формовки выводов должны быть заземлены;
  • расстояние от корпуса ПП или ИС до начала изгиба вывода должно быть не менее 2 мм, а радиус изгиба при диаметре вывода до 0,5 мм - не менее 0,5 мм, при диаметре 0,6- 1 мм - не менее 1 мм, при диаметре свыше 1 мм - не менее 1,5 мм.

В процессе монтажа, транспортировки и хранения ПП и ИС (особенно полупроводниковых приборов СВЧ) необходимо обеспечивать их защиту от воздействия статического электричества. Для этого все монтажное оборудование, инструменты, контрольно-измерительную аппаратуру надежно заземляют. Чтобы снять статическое электричество с тела электромонтажника, пользуются заземляющими браслетами и специальной одеждой.

Для отвода теплоты участок вывода между корпусом ПП (или ИС) и местом пайки зажимают специальным пинцетом (теплоотводом). Если температура припоя не превышает 533 К ± 5 К (270 °С), а время пайки не более 3 с, пайку выводов ПП (или ИС) производят без теплоотвода или применяют групповую пайку (волной припоя, погружением в расплавленный припой или др.).

Очистку печатных плат (или панелей) от остатков флюса после пайки производят растворителями, которые не влияют на маркировку и материал корпусов ПП (или ИС).

При установке ИС с жесткими радиальными выводами в металлизированные отверстия печатной платы выступающая часть выводов над поверхностью платы в местах пайки должна быть 0,5-1,5 мм. Монтаж ИС этим способом производят после подрезки выводов (рис. 55). Для облегчения демонтажа установку ИС на печатные платы рекомендуется производить с зазорами между их корпусами.

Рис. 55. Формовка жестких радиальных выводов ИС:
1 - отформованные выводы, 2 - выводы перед формовкой

Интегральные схемы в корпусах с мягкими планарными выводами устанавливают на контактные площадки платы без монтажных отверстий. В этом случае их расположение на плате определяется формой контактных площадок (рис. 56).

Рис. 56. Монтаж ИС с плоскими (планарными) выводами на печатную плату:
1 - контактная площадка с ключом, 2 - корпус, 3 - плата, 4 - вывод

Примеры формовки ИС с планарными выводами приведены на рис. 57.

Рис. 57. Формовка плоских (планарных) выводов ИС при установке на плату без зазора (я), с зазором (б)

Установка и крепление ПП и И С, а также навесных радиокомпонентов па печатные платы должны обеспечивать доступ к ним и возможность их замены. Для охлаждения ИС их следует располагать на печатных платах с учетом движения воздушного потока вдоль их корпусов.

Для электрического монтажа ПП и малогабаритных радиокомпонентов сначала их устанавливают на монтажную арматуру (лепестки, штыри и т. п.) и механически закрепляют на ней выводы. Для пайки монтажного соединения применяют бескислотный флюс, остатки которого после пайки удаляют.

Радиокомпоненты к монтажной арматуре крепят либо механически на собственных выводах, либо дополнительно хомутом, скобой, держателем, заливкой компаундом, мастикой, клеем и др. При этом радиокомпоненты закрепляют так, чтобы они не смещались при вибрации и ударах (тряске). Рекомендуемые виды крепления радиокомпонентов (сопротивлений, конденсаторов, диодов, транзисторов) показаны на рис. 58.

Рис. 58. Установка радиокомпонентов на монтажную арматуру:
а, б - резисторов (конденсаторов) с плоскими и круглыми выводами, в - конденсатора ЭТО, г - диодов Д219, Д220, д - мощного диода Д202, е - триодов МП-14, МП-16, ж - мощного триода П4; 1 - корпус, 2 - лепесток, 3 - вывод, 4 - радиатор, 5 - провода, 6 - изоляционная трубка

Механическое крепление выводов радиокомпонентов на монтажной арматуре производится загибкой или скруткой их вокруг арматуры с последующим обжатием. При этом излом вывода при обжатии не допускается. При наличии в контактной стойке или лепестке отверстия вывод радиокомпонента перед пайкой механически закрепляют, продевая его через отверстие и огибая на половину или целый оборот вокруг лепестка или стойки с последующим обжатием. Излишек вывода при этом удаляют боковыми кусачками, а место крепления обжимают плоскогубцами.

Как правило, способы установки радиокомпонентов и крепления их выводов оговариваются в сборочном чертеже на изделие.

Для уменьшения расстояния между радиокомпонентом и шасси на их корпуса или выводы надевают изоляционные трубки, диаметр которых равен или несколько меньше диаметра радиокомпонента. В этом случае радиокомпоненты располагают вплотную друг к другу или к шасси. Изоляционные трубки, надеваемые на выводы радиокомпонентов, исключают возможность замыкания с соседними токопроводящими элементами.

Длина монтажных выводов от места пайки до корпуса радиокомпоиента приводится в ТУ и, как правило, оговаривается в чертеже: для дискретных радиокомпонеитов она должна быть не менее 8 мм, а для ПП - не менее 15 мм. Длина вывода от корпуса до изгиба радиокомпонента также оговаривается в чертеже: она должна быть не менее 3 мм. Выводы радиокомпонентов изгибают шаблоном, приспособлением или специальным инструментом. Причем внутренний радиус изгиба должен быть не меньше удвоенного диаметра или толщины вывода. Жесткие выводы радиокомпонентов (сопротивлений ПЭВ и т. п.) при монтаже отгибать не разрешается.

Радиокомпоненты, подбираемые при настройке или регулировке прибора, следует подпаивать без механического закрепления на полную длину своих выводов. После подбора их номиналов и регулировки прибора радиокомпоненты должны быть подпаяны к опорным точкам с механическим закреплением выводов.

СБОРКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

И ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Особенности процесса сборки

Сборка полупроводниковых приборов и интегральных микросхем является наиболее трудоемким и ответственным технологическим этапом в общем цикле их изготовления. От качества сборочных операций в сильной степени зависят стабильность электрических параметров и надежность готовых изделий.

Этап сборки начинается после завершения групповой обработки полупроводниковых пластин по планарной технологии и разделе­ния их на отдельные элементы (кристаллы). Эти кристаллы, могут иметь простейшую (диодную или транзисторную) структуру или включать в себя сложную интегральную микросхему (с большим количеством активных и пассивных элементов) и поступать на сборку дискретных, гибридных или монолитных композиций.

Трудность процесса сборки заключается в том, что каждый класс дискретных приборов и ИМС имеет свои конструктивные особенности, которые требуют вполне определенных сборочных операций и режимов их проведения.

Процесс сборки включает в себя три основные технологические операции: присоединение кристалла к основанию корпуса; присоединение токоведущих выводов к активным и пассивным элементам полупроводникового кристалла к внутренним элементам корпуса; герметизация кристалла от внешней среды.

Присоединение кристалла к основанию корпуса

Присоединение кристалла полупроводникового прибора или ИМС к основанию корпуса проводят с помощью процессов пайки, приплавления с использованием эвтектических сплавов и приклеи­вания.

Основным требованием к операции присоединения кристалла является создание соединения кристалл -основание корпуса, об­ладающего высокой механической прочностью, хорошей электро- и теплопроводностью.

Пайка - процесс соединения двух различных деталей без их расплавления с помощью третьего компонента, называемого при­поем. Особенностью процесса пайки является то, что припой при образовании паяного соединения находится в жидком состоянии, а соединяемые детали - в твердом.



На рис. 1, а показан вариант присоединения кристалла ИМС, имеющего медные облуженные кон­тактные выступы, к подложке. Та­кая конструкция выводов не боится растекания припоя по подложке. Наличие высокого грибообразного выступа обеспечивает необходимый зазор между полупроводниковым кристаллом и подложкой при расплавлении припоя. Это позволяет проводить присоединение кристалла к подложке с высокой степенью точ­ности.

На рис. 1, в показан вариант сборки кристаллов, имеющих мяг­кие столбиковые выводы из припоя на основе олово-свинец.

П
рисоединение такого кристалла к основанию корпуса проводят обычным нагревом без дополнитель­ного давления на кристалл. Припой контактных выступов при нагрева­нии и расплавлении не растекается по поверхности облуженных участ­ков основания корпуса за счет сил поверхностного натяжения. Это, кроме того, обеспечивает определен­ный зазор между кристаллом и под­ложкой.

Рассмотренный метод присоединения кристаллов ИМС к осно­ванию корпуса или к какой-либо плате позволяет в значительной степени механизировать и автоматизировать технологический про­цесс сборки.

Приплавление с использованием эвтектических сплавов. Этот способ присоединения полупроводниковых кристаллов к основанию корпуса основан на образовании расплавленной зоны, в которой происходит растворение поверхностного слоя полупроводникового материала и слоя металла основания корпуса.

В промышленности широкое применение получили два эвтекти­ческих сплава: золото-кремний (температура плавления 370°С) я золото-германий (температура плавления 356°С). Процесс эвтектического присоединения кристалла к основанию корпуса имеет две разновидности. Первый вид основан на использовании прокладки из эвтектического сплава, которая располагается между соединяемыми элементами: кристаллом и корпусом. В этом виде соединения поверхность основания корпуса должна иметь зо­лотое покрытие в виде тонкой пленки, а поверхность полупроводни­кового кристалла может не иметь золотого покрытия (для кремния и германия) или быть покрытой тонким слоем золота (в случае присоединения других полупроводниковых материалов). При на­греве такой композиции до температуры плавления эвтектического сплава между соединяемыми элементами (кристалл-основание корпуса) образуется жидкая зона. В этой жидкой зоне происходит с одной стороны растворение слоя полупроводникового материала кристалла (или слоя золота, нанесенного на поверхность кри­сталла).

После охлаждения всей системы (основание корпуса - эвтектический расплав-полупроводниковый кристалл) происходит за­твердевание жидкой зоны эвтектического сплава, а на границе полупроводник-эвтектический сплав образуется твердый раствор. В результате этого процесса создается механически прочное соеди­нение полупроводникового материала с основанием корпуса.

Второй вид эвтектического присоединения кристалла к основа­нию корпуса обычно реализуется для кристаллов из кремния или германия. В отличие от первого вида для присоединения кристал­ла не используется прокладка из эвтектического сплава. В этом случае жидкая зона эвтектического расплава образуется в резуль­тате нагрева композиции позолоченное основание корпуса-кри­сталл кремния (или германия). Рассмотрим подробнее этот процесс. Если на поверхность основания корпуса, имеющего тонкий слой золотого покрытия, поместить кристалл кремния, не имеющий золотого покрытия, и всю систему нагреть до температуры на 40-50°С выше температуры эвтектики золото-кремний, то между соединяемыми элементами образуется жидкая фаза эвтектического состава. Так как процесс сплавления слоя золота с кремнием явля­ется неравновесным, то количество кремния и золота, растворив­шихся в жидкой зоне, будет определяться толщиной золотого по­крытия, температурой и временем проведения процесса сплавления. При достаточно больших выдержках и постоянной температуре процесс сплавления золота с кремнием приближается к равновес­ному и характеризуется постоянным объемом жидкой фазы золо­то-кремний. Наличие большого количества жидкой фазы может привести к вытеканию ее из-под кристалла кремния к его перифе­рии. При затвердевании вытекшая эвтектика приводит к образова­нию достаточно больших механических напряжений и раковин в структуре кристалла кремния, которые резко снижают прочность сплавной структуры и ухудшают ее электрофизические параметры.

При минимальных значениях времени и температуры сплавление золота с кремнием происходит не равномерно по всей площади соприкосновения кристалла с основанием корпуса, а лишь в ее от­дельных точках.

В результате этого уменьшается прочность сплавного соедине­ния, увеличиваются электрическое и тепловое сопротивления кон­такта и снижается надежность полученной арматуры.

Существенное влияние на процесс эвтектического сплавления оказывает состояние поверхностей исходных соединяемых элемен­тов. Наличие загрязнений на этих поверхностях приводит к ухуд­шению смачивания контактирующих поверхностей жидкой фазой и неравномерному растворению.

Приклеивание -это процесс соединения элементов друг с дру­гом, основанный на клеящих свойствах некоторых материалов, которые позволяют получать механически прочные соединения между полупроводниковыми кристаллами и основаниями корпусов (металлическими, стеклянными или керамическими). Прочность склеивания определяется силой сцепления между клеем и склеива­емыми поверхностями элементов.

Склеивание различных элементов интегральных схем дает воз­можность соединять самые разнообразные материалы в различных сочетаниях, упрощать конструкцию узла, уменьшать его массу, снижать расход дорогостоящих материалов, не применять припоев и эвтектических сплавов, значительно упрощать технологические процессы сборки самых сложных полупроводниковых приборов и ИМС.

В результате приклеивания можно получать арматуры и слож­ные композиции с электроизоляционными, оптическими и токопроводящими свойствами. Присоединение кристаллов к основанию корпуса с помощью процесса приклеивания незаменимо при сборке и монтаже элементов гибридных, монолитных и оптоэлектронных схем.

При приклеивании кристаллов на основания корпусов применя­ют различные типы клеев: изоляционные, токопроводящие, светопроводящие и теплопроводящие. По активности взаимодействия между клеем и склеиваемыми поверхностями различают полярные (на основе эпоксидных смол) и неполярные (на основе полиэти­лена).

Качество процесса приклеивания в значительной степени зави­сит не только от свойств клея, но и от состояния поверхностей склеиваемых элементов. Для получения прочного соединения необ­ходимо тщательно обработать и очистить склеиваемые поверхно­сти. Важную роль в процессе склеивания играет температура. Так, при склеивании элементов конструкций, которые не подвергаются в последующих технологических операциях воздействию высоких температур, можно использовать клеи холодного отверждения на эпоксидной основе. Для приклеивания кремниевых кристаллов к металлическим или керамическим основаниям корпусов обычно используют клей ВК-2, представляющий собой раствор кремний-органической смолы в органическом растворителе с мелкодиспергированным асбестом в качестве активного наполнителя или ВК-32-200, в котором в качестве наполнителя используют стекло или кварц.

Технологический процесс приклеивания полупроводниковых кристаллов проводят в специальных сборочных кассетах, обеспе­чивающих нужную ориентацию кристалла на основании корпуса и необходимое прижатие его к основанию. Собранные кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при ком­натной температуре.

Особые группы составляют электропроводящие и оптические клеи, используемые для склеивания элементов и узлов гибридных и оптоэлектронных ИМС. Токопроводящие клеи представляют собой композиции на основе эпоксидных и кремнийорганических смол с добавлением порошков серебра или никеля. Среди них наи­более широкое распространение получили клеи АС-40В, ЭК-А, ЭК-Б, К-3, ЭВТ и КН-1, представляющие собой пастообразные жидкости с удельным электрическим сопротивлением 0,01- 0,001 Ом-см и диапазоном рабочих температур от -60 до +150°С. К оптическим клеям предъявляют дополнительные требования по значению коэффициентов преломления и светопропускания. Наи­более широкое распространение получили оптические клеи ОК.-72 Ф, ОП-429, ОП-430, ОП-ЗМ.

Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки, Удельное давление выбирают в зависимости от допустимого на­пряжения сжатия кристалла полупроводника и допустимой дефор­мации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.

Относительная деформация при термокомпрессионной сварке

,

где d-диаметр проволоки, мкм; b-ширина соединения, мкм.

Давление на инструмент определяют, исходя из распределения напряжений на стадии завершения деформации:

,

г

де A-коэффициент, характеризующий изменение напряжений в процессе деформации проволоки; f-приведенный коэффициент трения, характеризующий трение между инструментом, проволо­кой и подложкой; -относительная деформация; -предел те­кучести материала проволоки при температуре деформации; d- диаметр проволоки;D-диаметр прижимного инструмента, рав­ный обычно (2ч3)d.

Рис. 2. Номограмма для выбора режимов термокомпрессионной сварки:

а- золотой проволоки с плёнкой алюминия; б- алюминиевой проволоки с плёнкой алюминия

На рис. 2 приведены номограммы режимов термокомпрес­сионной сварки золотой (а) и алюминиевой (б) проволоки с алю­миниевыми контактными площадками. Эти номограммы дают воз­можность оптимального выбора соотношения между давлением, температурой и временем.

Термокомпрессионная сварка имеет довольно много разновид­ностей, которые можно классифицировать по способу нагрева, по способу присоединения, по форме инструмента. По способу нагре­ва различают термокомпрессионную сварку с раздельным нагревом иглы, кристалла или пуансона, а также с одновременным нагре­вом двух из этих элементов. По способу присоединения термоком­прессионная сварка может быть встык и внахлест. По форме инструмента различают «птичий клюв», «клин», «капилляр» и «иглу» (рис. 14.3).

При сварке инструментом «птичий клюв» одно и то же устройство подает проволоку, присоединяет ее к контактным площадкам интегральной схемы и автоматически обрывает, не выпуская ее из «клюва». Инструмент в виде «клина» прижимает конец проволоки к подложке, при этом вдавливается не вся проволока, а только центральная ее часть. При сварке с помощью «капиллярного инст­румента» проволока проходит через него. Капиллярный наконеч­ник одновременно служит инструментом, передающим давление на проволоку. При сварке «иглой» конец проволочного вывода подво­дят в зону сварки специальным механизмом и накладывают на контактную площадку, а затем прижимают ее иглой с определенным усилием.

Р

ис. 3. Типы инструментов для проведения термокомпрессионной сварки:

а- «птичий клюв»; б- «клин»; в- «капилляр»; г- «игла»

Для осуществления процесса термокомпрессионной сварки ис­пользуются различные установки, основными узлами которых являются: рабочий столик с нагревательной колонкой или без нее, механизм создания давления на присоединяемый вывод, рабочий инструмент, механизм подачи и обрыва проволоки для выводов, механизм подачи кристаллов или деталей с присоединенным к ним кристаллом; механизм совмещения соединяемых элементов, опти­ческая система визуального наблюдения процесса сварки, блоки питания и управления. Все перечисленные узлы могут иметь раз­личное конструктивное исполнение, однако принцип их устройства и характер выполняемой работы одинаков.

В настоящее время для присоединения выводов к контактным площадкам кристаллов интегральных схем используются два спо­соба электроконтактной сварки: с односторонним расположением двух электродов и с односторонним расположением одного сдвоен­ного электрода. Второй способ отличается от первого тем, что ра­бочие электроды выполнены в виде двух токонесущих элементов, разделенных между собой изоляционной прокладкой. В момент прижатия такого электрода к проволочному выводу и пропускания через образовавшуюся систему электродного тока происходит вы­деление большого количества теплоты в месте контакта. Внешнее давление в сочетании с разогревом деталей до температуры плас­тичности или расплавления приводит к прочному их соединению.

Механизм подачи кристаллов включает в себя набор кассет, а ме­ханизм совмещения-систему манипуляторов, которые позволяют располагать кристалл в нужном положении. Оптическая визуаль­ная система наблюдения состоит из микроскопа или проектора. Блок питания и управления позволяет задавать рабочий режим сварки и производить его перестройку и регулировку при смене типа кристалла и материала вывода.

Холодная сварка. Метод герметизации холодной сваркой широко используется в электронной промышленности. В тех случаях, когда при герметизации исходных деталей корпусов недопустим их на­грев и требуется высокая чистота процесса, применяют холодную сварку-сварку под давлением. Кроме того, холодная сварка обес­печивает прочное герметичное соединение наиболее часто исполь­зуемых разнородных металлов (меди, никеля, ковара и стали).

К недостаткам данного метода следует отнести наличие значи­тельной деформации деталей корпусов в месте соединения, что приводит к существенному изменению формы и габаритных разме­ров готовых изделий.

Изменение наружного диаметра корпуса прибора зависит от толщины исходных свариваемых деталей. Изменение наружного диаметра готового прибора после проведения процесса холодной сварки

где - толщина буртика верхней детали до сварки; - толщи­на буртика нижней детали до сварки.

Большое значение для проведения процесса холодной сварки имеет наличие на поверхности соединяемых деталей пленки оксида. Если эта пленка пластичная и более мягкая, чем основной металл, то под давлением она растекается во все стороны и утоньшается, разделяя тем самым чистые металлические поверхности, в резуль­тате чего сварка не происходит. Если оксидная пленка более хруп­кая и твердая, чем покрываемый ею металл, то под давлением она трескается, причем растрескивание происходит одинаково на обеих соединяемых деталях. Загрязнения, имевшиеся на поверхности пленки, оказываются упакованными с обеих сторон в своеобразные пакеты, прочно зажатые по краям. Дальнейшее увеличение давле­ния приводит к растеканию чистого металла к периферийным уча­сткам. Наибольшее растекание происходит в серединной плоскости образовавшегося шва, благодаря чему все пакеты с загрязнения­ми вытесняются наружу, а чистые поверхности металла, всту­пая в межатомные взаимодействия, прочно сцепляются друг с другом.

Таким образом, хрупкость и твердость-это основные качества оксидной пленки, обеспечивающие герметичное соединение. Так как у большинства металлов толщина покрытия оксидными плен­ками не превосходит 10-7 см, детали из таких металлов перед сваркой никелируют или хромируют. Пленки никеля и хрома об­ладают достаточной твердостью и хрупкостью и, следовательно, значительно улучшают сварное соединение.

Перед проведением процесса холодной сварки все детали обез­жиривают, промывают и сушат. Для образования качественного соединения двух металлических деталей необходимо обеспечить достаточную деформацию, пластичность и чистоту свариваемых деталей.

Степень деформации К при холодной сварке должна находить­ся в пределах 75-85%:

,

где 2Н-суммарная толщина свариваемых деталей; t-толщина сварного шва.

Прочность сварного соединения

где Р - усилие разрыва; D - диаметр отпечатка выступа пуансо­на; Н - толщина одной из свариваемых деталей с наименьшим размером; -предел прочности на растяжение с наименьшим значением.

Для деталей корпусов при холодной сварке рекомендуются сле­дующие сочетания материалов: медь МБ-медь МБ, медь МБ-медь М1, медь МБ-сталь 10, сплав Н29К18 (ковар) -медь МБ, ковар-медь М1.

Критические давления, необходимые для пластической дефор­мации и холодной сварки, например для сочетания медь-медь, составляют 1,5*109 Н/м2, для сочетания медь - ковар они равны 2*109 Н/м2.

Герметизация пластмассой. Дорогостоящую герметизацию стек­лянных, металлостеклянных, металлокерамических и металлических корпусов в настоящее время успешно заменяют пластмассовой герметизацией. }В ряде случаев это повышает надежность приборов и ИМС, так как устраняется контакт полупроводникового кристал­ла с газовой средой, находящейся внутри корпуса.

Пластмассовая герметизация позволяет надежно изолировать кристалл от внешних воздействий и обеспечивает высокую механи­ческую и электрическую прочность конструкции. Для герметизации ИМС широко используют пластмассы на основе эпоксидных, крем-нийорганических и полиэфирных смол.

Основными методами герметизации являются заливка, обвола­кивание и опрессовка под давлением. При герметизации заливкой используют полые формы, в которые помещают полупроводниковые кристаллы с припаянными внешними выводами. Внутрь форм за­ливают пластмассу.

При герметизации приборов обволакиванием берут два (или более) вывода, изготовленных из ленточного или проволочного ма­териала, соединяют их между собой стеклянной или пластмассовой бусой и на один из выводов напаивают полупроводниковый кри­сталл, а к другому (другим) выводу присоединяют электрические контактные проводники. Полученную таким образом сборку герме­тизируют обволакиванием пластмассой.

Наиболее перспективным путем решения проблемы сборки и герметизации приборов является герметизация кристаллов с актив­ными элементами на металлической ленте с последующей гермети­зацией пластмассой. Преимущество этого метода герметизации со­стоит в возможности механизации и автоматизации процессов сбор­ки различных типов ИМС. Основным элементом конструкции пласт­массового корпуса является металлическая лента. Для выбора профиля металлической ленты необходимо исходить из размеров кристаллов, тепловых характеристик приборов, возможности мон­тажа готовых приборов на печатную плату электронной схемы, максимальной прочности на отрыв от корпуса, простоты конст­рукции.

Технологическая схема пластмассовой герметизации прибора включает в себя основные этапы планарной технологии. Присоеди­няют полупроводниковые кристаллы с активными элементами к металлической ленте, покрытой золотом, эвтектическим сплавле-нием золота с кремнием или обычной пайкой. Металлическую ленту изготовляют из ковара, меди, молибдена, стали, никеля.

Приложения

Р

ис. 3. Схема сборки веерного типа

Р
ис. 4. Схема сборки с базовой деталью

Р

ис. 5. Схема сборки (а) и разрез ИС (б) в круглом корпусе:

1-балон; 2-соединительные проводники; 3-кристалл; 4-контактные площадки; 5-припой; 6-колпачёк ножки; 7-стекло; 8-выводы; 9-спай выводов со стеклом; 10-соединение электроконтактной сваркой баллона и ножки; 11-металлизационный слой (шина)

Рис. 6. Схема соединения (сборки) кристалла с шариковыми выводами и подложки пайкой:

1
-кристалл; 2-контактная площадка; 3-стекло; 4-шарик медный; 5-медная подушка; 6-припой (высокотемпературный); 7-припой (низкотемпературный); 8-вывод из сплава AgPb; 9-подложка.

Рис. 7. Схема соединения (сборки) кристалла с балочными выводами и подложки пайкой:

1-золотой балочный вывод; 2-силицид пластины; 3-кристалл; 4-нитрид кремния; 5-платина; 6-титан; 7-подложка; 8-золотая контактная площадка.

Рис. 8. Схема линии сборки интегральных схем

На линии сборки используют трансферные ленты. Сборка и транспортировка осуществляются на коваровой ленте, которую на участках Л и Б подвергают фотолитографии для получения выво­дов 2 (рис. 10, а). На участкахВ, Г и Д на базе ленты с выводны­ми рамками изготавливают корпуса приборов с золочеными выво­дами. Отрезки ленты с корпусами поступают на сборку. Лента 2, сматываясь с катушки 1, подвергается промывке и обезжириванию в ванне 3 и нанесению фоторезиста в ванне 4, экспонированию в установке 5 с помощью ультрафиолетовой лампы 7. Роль маски в установке выполняет непрерывно движущаяся синхронно с лентой 2лента 6. Затем ленты промывают в ваннах 8 и 9. Выводы рамки 2 (рис. 10, а) и перфорационные отверстия вытравливают в ванне 10. Слой фоторезиста удаляют в ванне 11, и на выходе ленту сушат. Полученные перфорационные отверстия используют для натяжения и перемещения ленты с помощью звездочки 12. В установке 13 на коваровую ленту с выводами приклеивают с двух сторон трансферную ленту со слоем припоечного стекла. Полученная система обжи­гается, адгезивный слой выгорает, а стекло спаивается с металлом основной ленты (рис. 10, б). Охлаждение до комнатной темпе­ратуры производят в камере 14. С помощью устройства 15 на стеклянные слои приклеивают маскирующие ленты с окнами, через ко­торые в ванне16 осуществляют вытравливание полостей до обна­ружения внутренних выводов (рис. 10, е).

П
олученные таким образом из металлической и стеклянных лент корпусные блоки подают в ванну 17 для золочения выводов. На устройстве 18 лента режется на отрезки с корпусами, которые по конвейеру 19 подаются на сборку. Кристалл с готовыми структура­ми методом перевернутого монтажа лицевой стороной вниз с по­мощью шариковых выступов присоединяют к системе выводов внут­ри полученного корпуса (рис. 10, г). Герметизацию корпуса в за­щитной среде производят отрезками коваровой ленты 7, которые припаивают к основанию с помощью стекла, нагреваемого инстру­ментом (рис. 10, д). Полученная микросхема представлена на рис. 10, е

Рис. 9. Трансферная лента:

1-несущий слой; 2-трансферный слой; 3-адгезивный слой; 4-антиадгезивная бумага

Р

ис. 10. Схема автоматизированной сборки ИС на ленте:

1-лента-носитель; 2- выводы (после травления); 3- перфорация для перемещения ленты; 4-стеклянная лента-припой; 5-полость корпуса ИС; 6-кристалл с гото­выми структурами; 7 - корпус; 8-крышка; 9-нагревательный инструмент


Полупроводниковые приборы имеют в большинстве случаев гибкие выводы. Поэтому их включают в схему путем припайки. Пайку выводов производят на расстоянии не менее 10 мм от корпуса полупроводникового прибора (от вершины изолятора) с помощью низкотемпературного припоя. Изгиб выводов допускается на расстоянии не менее 3 - 5 мм от корпуса (рис. 90). Процесс пайки должен быть кратковременным (не более 10 сек). Мощность паяльника не должна превышать 50-60 Вт. Припаиваемый вывод плотно зажимают плоскогубцами. Плоскогубцы в данном случае играют роль теплоотвода. Необходимо следить за тем, чтобы нагретый паяльник даже на короткое время не прикасался к корпусу полупроводникового прибора. Капли припоя также не должны на него попадать.

Во избежание перегрева полупроводниковых приборов не следует располагать их вблизи силовых трансформаторов, электронных ламп и других излучающих тепло деталей аппаратуры. Желательно снижать рабочую температуру прибора. Если она будет на 10°С ниже предельной, то число отказов снижается вдвое. Крепление полупроводниковых приборов на выводах не рекомендуется, особенно если аппаратура может находиться в условиях вибрации. Рабочие напряжения, токи и мощности должны быть ниже предельных величин.

Срок службы диодов удлиняется, если их эксплуатировать при обратных напряжениях не свыше 80% предельно допустимых.

Нельзя допускать короткого замыкания выпрямителя на полупроводниковых диодах (испытания «на искру»). Это может привести к повреждению диодов. Полупроводниковый диод может быть поврежден, если на него включить напряжение в пропускном направлении (даже от одного аккумуляторного элемента) без последовательно включенного ограничительного сопротивления.

Транзисторы не должны даже короткое время работать с отключенной базой. При включении источников питания вывод базы транзистора должен присоединяться первым (при отключении - последним).

Нельзя использовать транзисторы в режиме, когда одновременно достигаются два предельных параметра (например, предельно допустимое напряжение коллектора и одновременно предельно допустимая рассеиваемая им мощность).

Срок службы транзистора удлиняется и надежность его работы увеличивается, если при его эксплуатации напряжение коллектора не превышает 80% предельно допустимой величины.

При работе транзистора в условиях повышенных температур нужно обязательно снижать рассеиваемую мощность и напряжение на коллекторе.

Необходимо следить за тем, чтобы подаваемое на транзистор питающее напряжение было правильной полярности (например, нельзя включать положительный полюс напряжения на коллектор транзистора p-n-p-типа или отрицательный на коллектор транзистора n-p-n-типа). Чтобы по указанной причине транзистор не пришел в негодность при установке его в схему, нужно твердо знать, какого он типа: p-n-p или n-p-n.

Если необходимо удалить транзистор из схемы (или включить его в схему), нужно предварительно выключить питание схемы.


Полупроводниковые приборы, сведения о которых приводятся в справочнике, являются приборами общего применения. Они могут работать в разнообразных условиях и режимах, характерных для различных классов радиоэлектронной аппаратуры широкого, промышленного и специального применения.

Общие технические требования к приборам, предназначенным для аппаратуры определенного класса, содержатся в общих технических условиях (ОТУ) на эти приборы. Конкретные нормы на значения электрических параметров и специфические требования к данному типу приборов излагаются в частных технических условиях (ЧТУ) и ГОСТ на приборы.

Высокая надежность радиоэлектронной аппаратуры на полупроводниковых приборах может быть обеспечена лишь при условии учета на стадии ее проектирования, изготовления и эксплуатации следующих особенностей приборов:

  • разброса значений параметров, их зависимости от режима и условий работы;
  • изменения значений параметров в течение времени хранения или работы;
  • необходимости хорошего отвода тепла or корпусов приборов;
  • необходимости обеспечения запасов по электрическим, механическим и другим нагрузкам на приборы в радиоэлектронной аппаратуре;
  • необходимости принятия мер, обеспечивающих отсутствие перегрузок приборов во время монтажа и сборки радиоэлектронной аппаратуры.

Значения параметров приборов одного типа не одинаковы, а лежат в некотором интервале. Этот интервал ограничивается минимальными или максимальными значениями, указанными в справочнике. Некоторые параметры имеют двухстороннее ограничение значений. Приведенные в справочнике вольтамперные характеристики, зависимости параметров от режима и температуры являются усредненными для большою количества экземпляров приборов данного типа. Эти зависимости могут использоваться при выборе типа прибора для данной схемы и ориентировочного ее расчета.

Большинство параметров полупроводниковых приборов значительно изменяется в зависимости от режима работы и температуры. Например, время восстановления обратного сопротивления импульсных диодов зависит от значения прямого тока, напряжения переключения и сопротивления нагрузки; потери преобразования и коэффициент шума СВЧ диодов зависят от уровня подводимой мощности. Значительно изменяется в диапазоне температуры, указанном в технических условиях, обратный ток диода. В справочнике приводятся значения параметров, гарантируемых ТУ для соответствующих оптимальных или предельных режимов использования.

Применение и эксплуатация приборов должны осуществляться в соответствии с требованиями ТУ и стандартами - руководствами по применению. При конструировании радиоэлектронной аппаратуры необходимо стремиться обеспечить ее работоспособность в возможно более широких интервалах изменений важнейших параметров приборов. Разброс параметров приборов и изменение их значений во времени при проектировании аппаратуры учитываются расчетными методами или экспериментально, например методом граничных испытаний.

Время, в течение которого полупроводниковые приборы могут работать в аппаратуре (их срок службы), практически неограниченно Нормативно-техническая документация на поставку приборов (ГОСТ. ТУ), как правило, гарантирует минимальную наработку не менее 15 000 ч. а в облегченных режимах и условиях эксплуатации - до 30 000 ч. Однако теория и эксперименты показывают, что через 50 - 70 тыс. ч работы возрастания интенсивности отказов не наблюдается. Тем не менее за время храпения и работы могут происходить изменения значений параметров приборов. У отдельных экземпляров эти изменения оказываются столь значительными, что происходит отказ аппаратуры. Для контроля уровня надежности изготовляемых приборов используются такие показатели, как гамма-процентный ресурс, гамма-процентная сохраняемость, минимальная наработка (гарантийная наработка), интенсивность отказов при специальных кратковременных испытаниях в форсированном режиме. Нормы на эти показатели устанавливаются в ТУ на приборы.

Для расчета надежности радиоэлектронной аппаратуры следует использовать количественные показатели надежности, устанавливаемые путем проведения специальных испытаний, обработки большого объема статистических данных о различных испытаниях и "эксплуатации приборов в разнообразной аппаратуре.

Экспериментально установлено, что интенсивность (вероятность) отказов приборов растет при увеличении рабочей температуры переходов, напряжения на электродах и тока. В связи с повышением температуры ускоряю(сч практически отказы всех видов: короткие замыкания, обрывы и значительные изменения параметров. Повышение напряжения значительно ускоряет отказы приборов с МДП структурами и с низковольтными переходами. Увеличение тока приводит, главным образом, к ускоренному разрушению контактных соединений и токоведуших дорожек металлизации на кристаллах.

Приближенная зависимость интенсивности отказов от нагрузки имеет вид:

где λ(T п,макс, U макс, I макс) интенсивность отказов при максимальной нагрузке (может быть взята из результатов кратковременных испытаний в форсированном режиме). Значение В приблизительно равно 6000 К.

Для повышения надежности работы приборов в аппаратуре необходимо снижать, главным образом, температуру переходов и кристаллов, а также рабочие напряжения и токи, которые должны быть существенно ниже предельно допустимых. Рекомендуется устанавливать напряжения и токи (мощность) на уровне 0.5-0.7 предельных (максимальных) значений. Эксплуатация полупроводниковых приборов при температуре, напряжении или токе, равных предельному значению, запрещается. Не допускается даже кратковременное (импульсное) превышение предельно допустимою режима при эксплуатации. Поэтому необходимо принимать меры по защите приборов от электрических перегрузок, возникающих при переходных процессах (при включении и выключении аппаратуры, при изменении режима ее работы, подключении нагрузок, случайных изменениях напряжения источников питания).

Режимы работы приборов должны контролироваться с учетом возможных неблагоприятных сочетаний условий эксплуатации аппаратуры (повышенная окружающая температура, пониженное давление окружающей среды и др.).

Если необходимое значение тока или напряжения превышает предельно допустимое для данною прибора значение, рекомендуется применение более мощною или высоковольтного прибора, а в случае диодов - их параллельное или последовательное соединение. При параллельном соединении необходимо выравнивать токи через диоды с помощью резисторов с небольшим сопротивлением, включаемых последовательно с каждым диодом. При последовательном включении диодов обратные напряжения на них выравниваются с помощью шунтирующих резисторов или конденсаторов. Рекомендуемые сопротивления и емкости шунтов обычно указываются в ТУ на диоды. Между последовательно или параллельно включенными приборами должна быть хорошая тепловая связь (например, все приборы устанавливаются на одном радиаторе). В противном случае распределение нагрузки между приборами будет неустойчивым.

При воздействии различных факторов (температуры, влаги, химических. механических и других воздействий) параметры, характеристики и некоторые свойства полупроводниковых приборов могут изменяться. Для защиты структур полупроводниковых приборов от внешних воздействий служат корпуса приборов. Корпуса мощных приборов одновременно обеспечивают необходимые условия отвода тепла, а корпуса СВЧ приборов - оптимальное соединение электродов приборов со схемой. Необходимо иметь в виду, что корпуса приборов имеют ограничения по герметичности и коррозионной устойчивости, поэтому при эксплуатации приборов в условиях повышенной влажности рекомендуется покрывать их специальными лаками (например, типа УР-231 или ЭП-730).

Обеспечение отвода тепла от полупроводниковых приборов является одной и; главных задач при конструировании радиоэлектронной аппаратуры. Необходимо придерживаться принципа максимально возможного снижения температуры переходов и корпусов приборов. Для охлаждения мощных диодов или тиристоров используются теплоотводящие радиаторы, работающие в условиях естественной конвекции или принудительного обдува, а также конструктивные элементы узлов и блоков аппаратуры, имеющие достаточную поверхность или хороший теплоотвод. Крепление приборов к радиатору должно обеспечивать падежный тепловой контакт. Если корпус прибора должен быть изолирован, то для уменьшения общего теплового сопротивления лучше изолировать радиатор от корпуса аппаратуры, чем диод или тиристор oт радиатора.

Отвод тепла улучшается при вертикальном расположении активных поверхностей радиатора, так как при этом лучше условия конвекции. Ориентировочные размеры теплоотводяших радиаторов в форме вертикально ориентированных пластин из алюминия (квадратных или прямоугольных) в зависимости от рассеиваемой ими мощности, можно определить но формуле

где S - площадь одной стороны пластины, см 2 ; Р - рассеиваемая в приборе мощность, Вт. Пластины площадью до 25 см 2 могут иметь толщину 1-2 мм, площадью от 25 до 100 см 2 2-3 мм. свыше 100 см 2 - 3 - 4 мм.

При заливке плат с полупроводниковыми приборами компаундами, пенопластами, пенорезиной необходимо учитывать изменение теплового сопротивления между корпусом прибора и окружающей средой, а также возможность увеличения дополнительного нагрева приборов от расположенных вблизи элементов схемы с большим тепловыделением. Температура при заливке не должна превышать максимальной температуры корпуса прибора, указанной в ТУ. При заливке не должны возникать механические нагрузки на выводы, нарушающие целостное 1Ь стеклянных изоляторов или корпусов приборов.

В процессе подготовки и проведения монтажа полупроводниковых приборов в аппаратуру механические и климатические воздействия на них не должны превышать значений, указанных в ТУ.

При рихтовке, формовке и обрезании выводов участок вывода около корпуса должен быть закреплен гак. чтобы в проводнике не возникали изгибающие или растягивающие усилия. Оснастка и приспособления для формовки выводов должны быть заземлены. Расстояние от корпуса прибора до начала изгиба вывода должно быть не менее 2 мм. Радиус изгиба при диаметре вывода до 0,5 мм должен быть не менее 0.5 мм, при диаметре 0,6-1 мм - не менее 1 мм. при диаметре свыше 1 мм - не.менее 1,5 мм.

Паяльники, применяемые для пайки выводов приборов, должны быть низковольтными. Расстояние от корпуса или изолятора до места лужения или пайки вывода должно быть не менее 3 мм. Для отвода тепла участок вывода между корпусом и местом пайки зажимается пинцетом с губками из красной меди. Жало паяльника должно быть надежно заземлено. Если температура припоя не превышает 533 + 5 К, а время пайки не более 3 с. то можно производить пайку без теплоотвода или групповым методом (волной, погружением в припой и др.).

Очистка печатных плат от флюса производится жидкостями. которые не влияют на покрытие, маркировку или материал корпуса (например, спирто-бензиновой смесью).

В процессе монтажа, транспортировки, хранения СВЧ приборов необходимо обеспечивать их защиту ог воздействия статического электричества. Для лого все измерительное, испытательное, монтажное оборудование и инструменты надежно за?емляю1ся: для снятия заряда с тела оператора применяются заземляющие браслеты или кольца. используются антистатическая одежда, обувь, покрытия столов рабочих мест.

Диоды СВЧ необходимо предохранять от воздействия внешних электрических наволок и электромагнитных полей. Не следует хранить или даже кратковременно оставлять СВЧ диоды без специальной экранирующей упаковки. Перед установкой СВЧ диодов в аппаратуру последняя должна быть заземлена. Входы и выходы СВЧ тракта в неработающем или хранящемся блоке аппаратуры с использованием СВЧ диодов должны выть перекрыты металлическими заглушками.

При эксплуатации аппаратуры должны быть приняты меры, предохраняющие СВЧ диоды от электрических СВЧ перегрузок, которые могут привести либо к необратимому ухудшению параметров. либо к полному отказу (выгоранию) диодов. Для защиты от СВЧ перегрузок в аппаратуре применяются резонансные разрядники, ферритовые oграничители, газоразрядные аттенюаторы.


Top