Адронный коллайдер, последние новости, фото, видео. Адронные коллайдеры позволяют открыть порталы в иные миры Для чего на самом деле строятся адронные коллайдеры

На Большом адронном коллайдере подвели итоги 2017 года. Новые улучшения, внесённые в конструкцию, позволили увеличить один из важнейших параметров установки – светимость. Теперь она в два раза больше проектной. Планы на год по интегральной светимости тоже перевыполнены. До конца года установке предстоит два технических включения, после чего будут вноситься новые улучшения.

Первый в мире проект ускорителя заряжённых частиц разработал норвежский школьник. В 1923 году Рольф Видероэ придумал устройство, разгоняющее частицы с помощью электрического поля. Впрочем, воплотить проект "в железе" не удалось из-за эффектов, не учтённых юным исследователем.

Первые действующие ускорители появились в начале 1930-х годов. Началась гонка за энергиями. Учёные жаждали разгонять частицы как можно сильнее и заставлять их сталкиваться сначала с неподвижными мишенями, а потом и друг с другом. В этих столкновениях рождались новые, ещё не известные науке частицы. Так ковалась современная физика.

Инженерный гений, подталкиваемый ненасытной жаждой познания, создавал причудливых технических исполинов. Например, для ускорителя в Институте ядерной физики в Гатчине был отлит постоянный магнит с диаметром полюса 6,5 метра!

Сейчас в мире действует примерно десяток больших ускорителей. Есть они, например, в Институте физики высоких энергий в Протвино и в Объединённом институте ядерных исследований в Дубне, где таблицу Менделеева постоянно . Но, конечно, ничто не сравнится с королём королей – Большим адронным коллайдером.

Протоны, ускоряемые электромагнитным полем, несутся навстречу друг другу в туннеле длиной 27 километров. Энергия частиц достигает 13 тераэлектронвольт. Таких ускорителей в истории физики ещё не бывало. Именно такая энергия позволила открыть знаменитый – квант поля, придающего элементарным частицам массу.

На счету ускорителя и – частиц, состоящих из пяти кварков, а не из трёх, как протон или нейтрон. Не говоря о таких мелочах, как , когда-либо достигнутая в эксперименте, и прочих побочных рекордах.

Но, кроме энергии протонов, исследователям важны и другие параметры. В конце концов, мало радости, если старательно ускоренные протоны все как один пролетят мимо друг друга, не столкнувшись.

Между прочим, большинство протонов именно так и делает. Лишь очень малая часть разогнанных частиц встречает "партнёра", чтобы столкнуться с ним лоб в лоб, и, породив новые частицы, порадовать учёных интересной физикой.

Чтобы столкновения происходили чаще, нужно уменьшать диаметр пучка. И в уходящем году на БАК для этого внедрили новую систему. Результаты, как говорится, налицо: как сообщается в релизе , в 2016 году экспериментаторы получали 40 столкновений на 100 миллиардов частиц, а в 2017 году – 60.

Количество столкновений частиц в секунду на квадратный сантиметр поперечного сечения туннеля называется светимостью ускорителя. В этом году её удалось поднять до 2,06 x 10 34 см -2 с -1 , что вдвое выше проектного значения.

Если умножить светимость на время работы ускорителя, получится так называемая интегральная светимость. Можно посчитать её за год, за один эксперимент или за всё время жизни установки.

Это очень удобная величина, чтобы подводить итоги. Она учитывает всё: и сколько экспериментов было проведено за год, и какая светимость наблюдалась в каждом из них. Вопрос, по гамбургскому счёту, прост: достигнута ли плановая интегральная светимость на 2017 год? Как явствует из графика, достигнута и даже превышена. Ура.

На графике представлен рост интегральной светимости коллайдера в 2017 году. Видно, что он достиг 50 обратных фемтобарн, то есть в совокупности на каждый квадратный сантиметр сечения туннеля в этом году пришлось 5 x 10 40 столкновений.

Почему эта величина так важна? Потому что самые интересные события – те, что происходят редко. Насколько они маловероятны, удобно судить по параметру, который специалисты называют сечением события. Например, рождение бозона Хиггса имеет сечение 2 x 10 35 см 2 . Разделив интегральную светимость на это число, получаем, что частица, за открытие которой в 2013 году , в 2017 году родилась 250 тысяч раз.

А в планах у ненасытных физиков очередное улучшение установки. После маленького апгрейда в конце этого года коллайдер проработает до середины 2018 года, а потом остановится на полтора года. За это время энергию частиц планируется поднять до 14 тераэлектронвольт, а светимость увеличить в два раза по сравнению с проектной.

Но и это не предел. В 2022 году стартует новый проект – HL-LHC . За два года работ планируется поднять светимость в 5–7, а возможно, и в 10 раз по сравнению с номинальной. И тогда очень редкие события перестанут быть такими уж редкими.

Какие открытия нам преподнесёт обновлённый коллайдер? Может быть, ? Или , о которой мечтает уже несколько поколений теоретиков? Никто не знает. Человечество ждёт новостей.

Сегодня в подмосковной Дубне, в Объединенном институте ядерных исследований, дают старт новому научному мегапроекту - будет заложен первый камень в строительство сверхпроводящего коллайдера NICA. На символическую церемонию ожидают президента РАН Владимира Фортова, помощника президента России Андрея Фурсенко, губернатора Подмосковья Андрея Воробьева, иностранных послов и нобелевских лауреатов.

Как рассказал накануне директор Объединенного института ядерных исследований академик РАН Виктор Матвеев, коллайдер NICA (Nuclotron-based Ion Collider fAcility) будет создан на базе уже существующего в ОИЯИ сверхпроводящего ускорителя Нуклотрон. На новой установке, которая относится к проектам mega-science, будут изучать переход ядерной материи при экстремальных условиях в новое состояние, называемое кварк-глюонной материей.

Намерение участвовать в создании коллайдера уже выразили Белоруссия, Болгария, Германия, Казахстан и Украина. А кульминационному событию этой недели предшествовал долгий процесс научных исследований, проектных разработок и организационных согласований. Момент символичен еще и потому, что как раз в эти дни коллектив ОИЯИ отмечает 60-летие с момента своего рождения в "оттепельном" марте 1956-го. Официальный статус сегодня - международная межправительственная научно-исследовательская организация. На правах постоянных членов ее поддерживают и делегируют в Дубну для работы своих ученых и специалистов 18 государств, включая Россию. Еще с шестью странами на правительственном уровне подписаны соглашения о сотрудничестве.

Создающийся комплекс NICA cостоит из трех крупных блоков: ускорительного, научно-исследовательского, инновационного. Ускорительный блок включает уже функционирующие источники ядер: линейный ускоритель и кольцевой ускоритель Нуклотрон. Причем Нуклотрон основан уже на криогенных технологиях XXI века, разработанных в Дубне, и является вторым сверхпроводящим ускорителем в Европе после Большого адронного коллайдера (LHC). Важно отметить и то, что при создании ускорительных и детекторных элементов комплекса NICA используется опыт, накопленный при подготовке экспериментов на Большом адронном коллайдере в ЦЕРНе, в научно-исследовательских лабораториях США и Европы.

Запуск в работу коллайдера NICA намечен на 2017 год, а первые результаты на нем ученые собираются получить в конце 2019-го - начале 2020 годов.

Одно из первых столкновений 2017 года в детекторе ATLAS

23 мая в Большом адронном коллайдере прошли первые в 2017 году столкновения протонов в рамках научной программы коллайдера. Завершена калибровка детекторов и тысяч подсистем крупнейшего ускорителя в мире после зимнего перерыва. Ожидается, что в следующие шесть месяцев коллайдер удвоит объем статистики столкновений при энергии 13 тераэлектронвольт. Об этом сообщает пресс-релиз CERN.

Каждую зиму коллайдер прерывает свою работу для обновления и ремонта систем ускорителя и детекторов. Несколько недель уходит у инженеров на последующий запуск БАК. Так, в этом году первые протонные пучки появились в ускорителе 29 апреля - инженеры проверили работоспособность радиочастотных резонаторов, ответственных за ускорение частиц и постепенно подняли кинетическую энергию частиц до требуемых 6,5 тераэлектронвольт (в 6,5 тысяч раз больше, чем энергия покоя протона). Физики настроили магниты и коллиматоры, корректирующие форму и траекторию пучка и обеспечивающие столкновения между встречными пучками.

С 10 мая начались столкновения в точках пересечения пучков - основных детекторах БАК: ATLAS, LHCb, CMS и ALICE. Главная задача предварительных столкновений - проверка управляемости пучков и тестирование систем детекторов, в частности, корректировка положения точки, в которой пучки сталкиваются. Во время предварительных столкновений используются пучки, состоящие из небольшого количества сгустков (около десяти против более двух тысяч) и гораздо меньшего количества протонов, чем во время сбора научных данных.

Сейчас интенсивность пучков также невелика. Постепенно физики будут наращивать количество протонов в сгустках и делать сгустки плотнее - это ускорит темпы столкновений протонов и сбора статистики. В 2016 году ученые набрали интегральную светимость около 40 обратных фемтобарн - эта величина, согласно пресс-релизу организации, соответствует 6,5 миллионам миллиардов столкновений протонов. По плану на 2017 год ожидается интегральная светимость установки по меньшей мере в 45 обратных фемтобарн. Для сравнения, в 2015 году коллайдер обеспечил интегральную светимость около 4,2 обратных фемтобарн, а за 2012 год Run 1 - 23 обратных фемтобарн.


Одно из первых столкновений в детекторе CMS

В отличие от 2015 и 2016 года, в конце нового сезона работы ускорителя не будет сеанса столкновений с ионами свинца для генерации кварк-глюонной плазмы. Это состояние вещества, моделирующее первые минуты жизни Вселенной. Вместо этого детектор ALICE продолжит обработку данных прошлых лет и будет собирать информацию о протон-протонных столкновениях. Недавно физики о том, что несмотря на небольшую массу протонов, в их столкновениях тоже может образовываться кварк-глюонная плазма.

CMS и ATLAS продолжат исследования свойств бозона Хиггса, открытого в 2012 году. Эксперименты определят параметры рождения и каналов распада частицы, а также то, как она взаимодействует с другими частицами. Кроме того, вместе с экспериментом LHCb (наше интервью с руководителями коллаборации можно прочесть ), физики продолжат анализировать редкие и экзотические процессы в поисках следов Новой физики.

Увеличив объем статистики ученые смогут узнать природу необычных пиков высокоэнергетических событий, которые могут указывать на новые, еще не открытые частицы. К примеру, недавно ATLAS об избытке рождения пар бозон Хиггса-бозон слабого взаимодействия с суммарной энергией три тераэлектронвольта. Статистическая значимость события невелика - не превышает 3,3 сигма, но если его источником окажется реальная частица, то ее масса будет в десятки раз больше, чем у любой из известных элементарных частиц.

Владимир Королёв

Физики ожидают отсрочки в запуске модернизированного Большого адронного коллайдера - HL-LHC (High-Luminosity LHC). Третий сеанс работы в текущем виде может быть продлен на весь 2024 год, последующая за ним пауза - на полгода, так что запуск обновленной установки состоится лишь в 2028 году, а не в 2026, как было заложено в изначальных планах. Об этом говорится в презентации участника одного из экспериментов, официальное сообщение от ЦЕРН должно появиться позже.

Большой адронный коллайдер (БАК, Large Hadron Collider, LHC) - это самый мощный ускоритель элементарных частиц. Он создан для изучения столкновений пучков протонов на больших энергиях, при взаимодействии которых рождается большое количество новых частиц. Основным достижением этой установки стало открытие бозона Хиггса. Также ожидалось, что БАК сможет найти новые частицы за рамками предсказаний Стандартной модели, но эти надежды не оправдались.

План функционирования БАК предполагает три рабочих сеанса длительностью по несколько лет, в течение которых собираются научные данные. Между ними установка выключена, а ее элементы заменяются на более новые, что позволяет увеличить энергию столкновений, светимость и другие параметры. В данный момент идет второй период длительной остановки на переоборудование. Третий рабочий сеанс начнется в 2021 году. По изначальным планам он должен был продлиться до конца 2023 года, затем очередная остановка на 2,5 года, а с конца 2026 - работа уже в режиме высокой светимости.

Однако эти планы сдвигаются, говорится в слайдах Густава Бройманс (Gustaaf Brooijmans) из Колумбийского университета. Третий сеанс будет продлен на год до конца 2024, а следующая за ним остановка на полгода - до второй половины 2027. В таком случае полноценная работа обновленного коллайдера начнется лишь в 2028 году с опозданием примерно на полтора года относительно начальных планов.

Улучшение до HL-LHC должно увеличить один из основных параметров установки, светимость, примерно в десять раз. Эта величина характеризует интенсивность столкновений частиц и фактически определяет темп набора данных. Для этого потребуется внести изменения на 1,2 километра основного кольца из 27. В частности, там установят новые сверхпроводящие магниты, генерирующие поле в 11–12 тесла, что уменьшит диаметр пучка около двух основных детекторов - ATLAS и CMS. Стоимость работ оценивается в 1,3 миллиарда евро.

Physics World отмечает , что задержка связана, в первую очередь, с недостатком финансирования в размере около 100 миллионов фунтов стерлингов. Издание пишет, что эти средства должны были поступить от одной из сотрудничающих с ЦЕРН стран, не входящих в организацию.

Ранее сообщалось, что ЦЕРН от продуктов компании Microsoft и начнет систематический переход на открытое программное обеспечение, а Большой адронный коллайдер дома излишками тепла. Также мы подробно про заключение нового соглашения о научно-техническом сотрудничестве между Россией и ЦЕРН.

Тимур Кешелава


Top