Значение пзу. Постоянная память (пзу). Исторические типы ПЗУ

В микропроцессорных и других цифровых автоматических системах необходима память, которая служила бы источником информации, остающейся неизменной, в том числе и при отключении питания (списки констант таблицы, постоянные программы, микропрограммы и подпрограммы). В таких случаях используются модули памяти, в которых изменить записанную информацию невозможно средствами самок, использующей данный модуль системы. Эти модули называют постоянными ЗУ (ПЗУ). Таким образом, ПЗУ - это постоянное запоминающее устройство, содержимое которого не может быть заменено микропроцессором в ходе выполнения рабочей программы и сохраняется при снятии питания системы. В процессе обработки информации ПЗУ представляет собой память, работающую только в режиме считывания.

Применение ПЗУ позволяет достичь большей плотности упаковки информации за счет упрощения запоминающих элементов.

ПЗУ как устройство памяти в целом может работать в одном из двух режимов: чтение или программирование. Программированием ПЗУ называют процесс записи информации в него (в отличие от общепринятого понимания программирования как процесса составления программы).

Следует отметить, что обычно стремятся к тому, чтобы при программировании не требовалось никаких новых внешних линий, Отличных от используемых в модуле ПЗУ при работе в режиме чтения.

Программируемость памяти этого типа подразумевает существование множества некоторых коммутируемых элементов, с помощью которых можно установить или снять «перемычку», связывающую линию выборки элемента памяти или ячейки (строки) с линией считывания информации (разрядной линией). Коммутация определяется той информацией, которую должно хранить ПЗУ, а конкретная реализация «перемычек» и способ программирования зависят от типа ПЗУ.

По способу программирования выпускаемые полупроводниковые ПЗУ делятся на два типа: МПЗУ - масочные ПЗУ, в которых информация заносится (осуществляется программирование) в процессе изготовления масочным способом; создаются они на базе полевых или биполярных транзисторов;

ЭППЗУ - электрически программируемые ПЗУ, в которых информация может быть занесена электрическим способом, т. е. они допускают в особом режиме программирование или репрограммирование (перепрограммирование, повторное программирование) с помощью электрических сигналов. Их называют также ПЗУ, программируемые пользователем, так как они в отличие от масочных ПЗУ позволяют записать нужную информацию самому пользователю; в таких ПЗУ состояние перемычек можно задать уже после изготовления устройства либо создав, либо разрушив соединение.

По признаку кратности программирования ЭППЗУ можно разделить на ПЗУ с однократным программированием (ППЗУ) (за счет необратимых изменений их структуры) и ПЗУ с многократной сменой (репрограммированием) информации (РПЗУ).

Электрически программируемые ПЗУ (как ППЗУ, так и РПЗУ) стали неотъемлемыми компонентами МПАС. АСУТП и других систем, где требуется частая модификация программ. Программа обработки информации заносится в них электрическим способом и можем храниться там достаточно долго независимо от наличия или отсутствия питания.

По принципу записи информации ППЗУ можно разделить на две группы:

с пережиганием плавких перемычек; с пробоем перехода вполупроводнике, а РПЗУ - на три:

с формированием электрического заряда в двухслойном диэлектрике МНОП-структуры;

с лавинной инжекцией электрического заряда в область плавающего затвора МОП-структуры (ЛИПЗ МОП):

с изменением проводимости стеклообразного материала. Стирание информации в РПЗУ осуществляется двумя способами; электрическое стирание и воздействие ультрафиолетовыми (УФ) лучами.

Масочные ПЗУ программируются на одном из последних технологических этапов их производства. Элементы коммутации представляют собой просто промежутки, часть которых перемыкается на этапе металлизации схемы. Это делается с помощью масок-фотошаблонов, задающих точную форму участков металлизации и изготовляемых по заказу для каждого конкретного наполнения ПЗУ, Маска довольно дорога, но с помощью одной маски можно запрограммировать любое число модулей памяти. Следовательно, ПЗУ, программируемые при помощи масок, экономически целесообразны при крупносерийном производстве.

Принцип действия ППЗУ основан на физических процессах, позволяющих необратимо изменять электрическое сопротивление участка цепи. Различают два типа однократно программируемых запоминающих элементов (ЗЭ): резисторный и диодный.

Бит информации, хранящейся в ЗЭ резисторного типа, определяется наличием или отсутствием плавкой перемычки. В состоянии после изготовления ЗЭ хранит 1 (сопротивление перемычки мало), а после пережигания плавкой перемычки - 0. В качестве плавких перемычек широко применяют тонкие пленки из нихрома или полукристаллического кремния (сопротивление перемычки составляет около 10 Ом).

Для работы в режиме программирования необходимо предусмотреть средства для избирательного пережигания перемычек. Обычно используется дополнительный внешний источник повышенного напряжения питания. Через перемычку пропускают импульс тока (плотностью около ), в результате чего она необратимо разрушается.

Работа ЗЭ диодного типа основана на необратимых явлениях, происходящих при пробое обратносмещенного -перехода. В исходном состоянии ЗЭ диодного типа хранит 0 (его обратное сопротивление очень велико). При программировании к диоду прикладывается запирающее напряжение повышенного уровня, под действием которого -переход пробивается, т. е. происходит короткое замыкание, что соответствует записи логической единицы.

Репрограммируемые ПЗУ можно программировать, стирать информацию и относительно быстро (за ограниченное время) программировать заново. В них используются элементы коммутации, которые можно устанавливать в одио состояние групповым способом (т. е. все сразу), а в другое - избирательно. Репрограммирование таких ПЗУ сводится сначала к групповой установке всех «перемычек» в одно состояние, что равносильно стиранию ранее записанной информации, и последующей избирательной (поочередной) установке нужных «перемычек» в другое состояние.

Репрограммируемые ПЗУ обычно строятся на принципах сохранения заряда в диэлектрике: в МНОП-структуре (металл-нитрид кремния-оксид кремния-полупроводник), представляющей собой МОП-транзистор, у которого затвор (металлический) отделен от кремниевой подложки диэлектриком, состоящим из двух слоев; в МОП-структуре с использованием эффекта лавинной инжекции электрического заряда в область плавающего (изолированного) затвора (ЛИПЗ МОП).

Другое направление создания РПЗУ, которое признается в настоящее время более перспективным, основано, на обратимых изменениях физической структуры материала, в частности используется свойство порогового переключения аморфных полупроводников.

РПЗУ на МНОП-технологии имеют следующие преимущества: большое допустимое число циклов перепрограммирования ; электрическое стирание. К недостаткам следует отнести: ограниченное время хранения информации (в выключенном состоянии не более 2-10 тыс. ч, в режиме непрерывного считывания - 200 - 500 ч): высокие амплитуда и длительность импульсов перепрограммирования (25-36 В, 5-100 мс), ограниченное время считывания .

Для ЛИПЗ МОП-технологии характерны следующие достоинства: повышенное быстродействие (до 0,1 мкс); большая информационная емкость (до 65-128 К бит); длительное время хранения информации в выключенном и включенном состоянии (до 10 лет). Недостатками являются: ограниченное число циклов перепрограммирования (10-100) и применение УФ-излучения при стирании.

Структура БИС РПЗУ такого типа, например К573РФ13 (К573РФ1) содержит: матрицу-накопитель; регистр; дешифратор адреса; усилители считывания. Структура памяти (организация накопителя) 1024 х 8. время выборки 900 не. Стирание информации производится ультрафиолетовым облучением кристалла микросхемы через окно в крышке корпуса. Количество циклов перепрограммирования около 100. РПЗУ способны сохранять заряд при отключенном питании в течение 2-3 тыс. ч.

РПЗУ с электрическим стиранием обладают рядом эксплуатационных достоинств, особенно важных для экспериментальных систем:

простота программирования блоков памяти в составе систем; возможность дистанционной смены содержания; практически неограниченное число циклов перезаписи; достаточное для большинства экспериментальных задач время хранения информации (3-10 тыс. ч).

Развитие РПЗУ обоих типов (с электрическим и УФ-стиранием) ведет в конечном итоге к получению схем. обладающих достоинствами как первого, так и второго

Перспективы разработки и применения ЭП ПЗУ. Анализ отечественных и зарубежных работ в области МТ показывает, что значение различных видов памяти при создании МПАС все более возрастает. В перспективе архитектуру информационно-вычислительной основы МПАС можно представить в виде подсистемы памяти, которая будет рассматриваться как центральная (и основная) подсистема. и ряда других подсистем.

ПЗУ позволяют в полной мере реализовать основные идеи, лежащие в основе МТ:

возможность хранения программы обработки информации в

компактной и надежной физической среде - в кристалле кремния;

универсальность и гибкость системы, возможность быстро и просто модифицировать эту программу столько раз, сколько потребуется в ходе разработки и отладки системы, возможность полной перестройки системы на решение новой задачи без изменения аппаратной части, исключительно за счет смены информации, хранящейся в памяти;

энергонезависимость хранения программы, свойственная всем ПЗУ, возможность использования МП как встроенного съемного модуля в различных агрегатах, механизмах, устройствах, системах и пр.

Особенно эффективно применение программируемых ПЗУ на стадии отладки ПО МПС. Отладка и оптимизация некоторой программы в общем случае требуют нескольких десятков ее прогонов в системе, а каждый такой прогон требует записи в ПЗУ нового варианта программы. Наличие ПЗУ, которое можно быстро репрограммировать при помощи стандартных адресных сигналов, значительно упрощает процедуру отладки и оптимизации программ. Поэтому в системы отладки МПС и в так называемые прототипные комплекты обязательно входят ЭГШЗУ. После завершения всех этапов отладки ПО, при сборке промышленных образцов систем эти ПЗУ могут быть замечены более компактными и дешевыми стандартными ПЗУ. программируемыми масочным способом при изготовлении. В этих ПЗУ предусматривают идентичные с ЭППЗУ разводу выводов, уровни сигналов и питающих напряжений.

При другом подходе ЭППЗУ могут быть использованы на этапе опытного производства при выпуске мелких партий. Такой подход может оказаться экономически более выгодным, поскольку масочное программирование ПЗУ требует больших затрат времени и средств, которые окупаются лишь при крупносерийном производстве.

Перспективны ЭППЗУ и в областях, где требуется дистанционное ренрограччирование МПС, установленной в недоступных или опасных для человека местах, например, в ядерных реакторах, в морских глубинах, в космосе. Сигналы репрограммирования могут быть при этом переданы стандартными радиотехническими средствами на огромные расстояния.

Именно ЭППЗУ позволят физически воплотить такие качества информационных систем, как адаптивность, способность к обучению, переобучению и самообучению.

Большие возможности для создания гибких средств автоматики открываются благодаря применению ЭППЗУ в программируемых логических матрицах (ПЛМ). Ранее ПЛМ для реализации заданной логической функции программировались на стадии изготовления.

Все более широко будут применяться ПЗУ для хранения операционных систем. Без быстрого прогресса в разработке и применении различных видов постоянной памяти не могут быть созданы по-настоящему надежные, компактные и экономичные средства обработки информации и управления.

Разнообразие требований, предъявляемых к БИС ЭППЗУ, и все возрастающий интерес к этим приборам обусловили разработку элементов и схем, отличающихся большим разнообразием физических принципов, технологии изготовления и технических характеристик. Это ставит перед разработчиками МПАС определенные задачи при поиске оптимальных решений - они должны хорошо ориентироваться в этом разнообразии ЗУ.

Программирование ЭППЗУ включает в себя формирование адресов, записывающих импульсов и контроль записанной информации. Объектом программирования могут быть отдельная БИС, группа БИС, программируемых одновременно, блок памяти, состоящий из некоторого числа БИС.

В зависимости от необходимости и экономической целесообразности программирование ЭППЗУ может быть автоматизировано в самой различной степени и осуществляться на установках большей или меньшей сложности.

Программаторы ЭППЗУ классифицируют по:

степени универсальности по отношению к различным типам БИС ЭППЗУ;

производительности - числу одновременно программируемых БИС;

способу управления процессом программирования (ручные, полуавтоматические и автоматические программаторы);

функциональной законченности (различают программаторы автономные и работающие под управлением мини- или микроЭВМ, не входящей в состав программатора);

конструктивному выполнению (программатор может быть выполнен в виде отдельного прибора, программирующей платы, входящей в состав ЭВМ, либо программирующего узла на плате памяти).

Простейший программатор ручного типа содержит тумблеры для набора адреса и данных, формирователи адресного кода, сигналов управления и записи. Такой прибор очень прост в работе, может быть изготовлен в любой лаборатории, но его производительность чрезвычайно низка, поэтому он пригоден для обработки БИС малой информационной емкости, притом небольшими партиями. Процесс программирования при этом медленный, ненадежный, утомительный для оператора. В более сложных программаторах ручного типа возможна индикация адреса и данных в двоичном, десятичном либо шестнадцатеричном коде, а также контроль содержимого ЭППЗУ.

Программируемая логическая матрица (ПЛМ). Представляет собой матрицу вентилей, которую можно запрограммировать в виде различных комбинаций вентилей, реализующих логические функции ИЛИ и И. На их основе могут составляться сложные комбинационные логические схемы. ПЛМ отличаются от ПЗУ только структурой и выпускаются в виде устройств, программируемых маской, и устройств, программируемых пользователем.

На базе такой матрицы могут быть организованы конъюнктивная матрица, реализующая функции И, и дизъюнктивная матрица, реализующая функции ИЛИ.

Реализация более сложных функций возможна при объединении обеих матриц. При подключении к ПЛМ дешифратора полученная схема может выполнять функции ПЗУ.

Такое сочетание выгодно применять при построении устройств памяти небольшой емкости, в которых емкость ПЗУ используется не полностью и поэтому расходы на ПЗУ не оправдываются.

ПЛМ можно также применять как фиксированную схему управления, которая дает возможность значительно увеличить быстродействие всей системы. Это объясняется тем, что ПЛМ является комбинационной схемой с высоким быстродействием.

ПЛМ изготовляется в виде интегральной однокорпусной схемы.

ПЗУ, ППЗУ, ПЛМ могут быть эффективно использованы при создании МПС. реализующих табличные и таблично-алгоритмические методы обработки информации. Использование табличных процессоров представляется весьма перспективным при создании специализированных «функциональных расширителей» на серийной элементной базе - БИС ОЗУ, ПЗУ, ППЗУ и ПЛМ.


Постоянное запоминающее устройство (ПЗУ) – ЗУ, предназначенное для хранения неизменяемой информации (программ, констант, табличных функций). В процессе решения задач ПЗУ допускает только чтение информации. В качестве характерного примера применения ПЗУ можно указать БИС ПЗУ, используемые в РС для хранения BIOS (Basic Input Output System – базовой системы ввода-вывода).

В общем случае накопитель ПЗУ (массив его запоминающих ячеек) емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое, обычно представляет собой систему из ЕПЗУ горизонтальных (адресных) и r + 1 вертикальных (разрядных) проводников, которые в точках пересечения могут быть соединены элементами связи (рис. 1.46). Элементы связи (ЭС) – это плавкие вставки или p -n -переходы. Наличие элемента связи между j -м горизонтальным и i -м вертикальным проводниками означает, что в i -м разряде ячейки памяти номер j записана единица, отсутствие ЭС означает, что здесь записан нуль. Запись слова в ячейку номер j ПЗУ производится должной расстановкой элементов связи между разрядными проводниками и адресным проводом номер j . Чтение слова из ячейки номер j ПЗУ происходит так.

Рис. 1.46. Накопитель ПЗУ емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое

Код адреса A = j дешифрируется, и на горизонтальный проводник номер j накопителя подается напряжение от источника питания. Те из разрядных проводников, которые соединены с выбранным адресным проводником элементами связи, оказываются под напряжением U 1 уровня единицы, остальные разрядные проводники остаются под напряжением U 0 уровня нуля. Совокупность сигналов U 0 и U 1 на разрядных проводниках и образует содержимое ЯП номер j , а именно слово по адресу А .

В настоящее время ПЗУ строят из БИС ПЗУ, у которых используются полупроводниковые ЭС. БИС ПЗУ принято делить на три класса:

– масочные (МПЗУ);

– программируемые (ППЗУ);

– репрограммируемые (РПЗУ).

Масочные ПЗУ (ROM – от Read Only Memory) – ПЗУ, информация в которые записывается с фотошаблона в процессе выращивания кристалла. Например, БИС ПЗУ 555РЕ4 емкостью 2 кбайта представляет собою генератор символов по коду КОИ-8. Достоинством масочных ПЗУ является их высокая надежность, а недостатком – низкая технологичность.

Программируемые ПЗУ (PROM – Programmable ROM) – ПЗУ, информация в которые записывается пользователем при помощи специальных устройств – программаторов. Данные БИС изготавливаются с полным набором ЭС во всех точках пересечения адресных и разрядных проводников. Это повышает технологичность таких БИС, а значит, и массовость в производстве и применении. Запись (программирование) информации в ППЗУ производится пользователем по месту их применения. Делается это путем выжигания элементов связи в тех точках, в которых должны быть записаны нули. Укажем, например, на ТТЛШ-БИС ППЗУ 556РТ5 емкостью 0,5 кбайт. Надежность БИС ППЗУ ниже, чем у масочных БИС. Перед программированием их необходимо тестировать на наличие ЭС.

В МПЗУ и ППЗУ невозможно изменять содержимое их ЯП. Репрограммируемые ПЗУ (РПЗУ) допускают многократную смену хранимой в них информации. Фактически РПЗУ – это ОЗУ, у которых t ЗП>>t ЧТ. Замена содержимого РПЗУ начинается со стирания хранившейся в нем информации. Выпускаются РПЗУ с электрическим (EЕPROM) и ультрафиолетовым (UVEPROM) стиранием информации. Например, БИС РПЗУ с электрическим стиранием КМ1609РР2А емкостью 8 кбайт может перепрограммироваться не менее 104 раз, хранит информацию не менее 15000 ч (около двух лет) во включенном состоянии и не менее 10 лет – в выключенном. БИС РПЗУ с ультрафиолетовым стиранием К573РФ4А емкостью 8 кбайт допускает не менее 25 циклов перезаписи, хранит информацию во включенном состоянии не менее 25000 ч, а в выключенном – не менее 100000 ч.

Основное назначение РПЗУ – использование их вместо ПЗУ в системах разработки и отладки программного обеспечения, микропроцессорных системах и других, когда приходится время от времени вносить изменения в программы.

Работу ПЗУ можно рассматривать как однозначное преобразование N -разрядного кода адреса А в n -разрядный код считываемого из него слова, т.е. ПЗУ является преобразователем кода (цифровым автоматом без памяти).

На рис. 1.47 показано ус­ловное изображение ПЗУ на схемах.

Рис. 1.47. Условное изображении ПЗУ

Функциональная схе­ма ПЗУ приведена на рис. 1.48.

Рис. 1.48. Функциональная схема ПЗУ

По принятой в среде специалистов по запоми­нающим устройствам терминологии входной код называется адресом, 2n вертикальных шин – числовыми линейками, m выходов – разрядами храни-мого слова. При поступлении на вход ПЗУ любого двоичного кода всегда выбирается одна из числовых линеек. При этом на выходе тех элементов ИЛИ, связь которых с данной чис­ловой линейкой не разрушена, появляется 1. Это значит, что в данном разряде выбранного слова (или числовой ли­нейки) записана 1. На выходах тех разрядов, связь кото­рых с выбранной числовой линейкой выжжена, останутся нули. Закон программирования может быть и инверсным.

Таким образом, ПЗУ – это функциональный узел с n входами и m выходами, хранящий 2n m -разрядных слов, которые при работе цифрового устройства не изменяются. При подаче на вход ПЗУ адреса на выходе появляется со­ответствующее ему слово. При логическом проектировании постоянное ЗУ рассматривают или как память с фиксиро­ванным набором слов, или как кодовый преобразователь.

На схемах (см. рис. 1.47) ПЗУ обозначается как ROM. Постоян­ные запоминающие устройства обычно имеют вход разре­шения Е. При активном уровне на входе Е ПЗУ выполняет свои функции. При отсутствии разрешения выходы микро­схемы неактивны. Разрешающих входов может быть не­сколько, тогда микросхема отпирается по совпадению сиг­налов на этих входах. В ПЗУ сигнал Е часто называют чте­нием ЧТ (read), выбором микросхемы ВМ, выбором кристалла ВК (chip select – CS).

Микросхемы ПЗУ приспособлены для наращивания. Чтобы увеличить число разрядов хранимых слов, все входы микросхем включают параллельно (рис. 1.49, а ), а с увеличившегося суммарного числа выходов снимается выход­ное слово соответственно увеличенной разрядности.

Для уве­личения числа самих хранимых слов (рис. 1.49, б ) адресные входы микросхем включают параллельно и рассматривают как младшие разряды нового, расширенного адреса. Добав­ленные старшие разряды нового адреса поступают на де­кодер, который по входам Е выбирает одну из микросхем. При малом числе микросхем дешифрацию старших разря­дов можно делать на конъюнкции разрешающих входов са­мих ПЗУ. Выходы одноименных разрядов при увеличении числа хранимых слов должны объединяться с помощью функций ИЛИ. Специальных элементов ИЛИ не требуется, если выходы микросхем ПЗУ выполнены или по схеме от­крытого коллектора для объединения методом монтажного ИЛИ, или по схеме буфера с тремя состояниями, допуска­ющего непосредственное физическое объединение выходов.

Выходы микросхем ПЗУ обычно инверсные, инверсным часто бывает и вход Е. Наращивание ПЗУ может потребовать введения буферных усилителей для увеличе­ния нагрузочной способности некоторых источников сигна­лов, учета вносимых этими усилителями дополнительных задержек, но в общем при сравнительно небольших объемах памяти, что типично для многих ЦУ (например устройств автоматики), наращива­ние ПЗУ обычно не порождает принципиальных проблем.

Рис. 1.49. Увеличение числа разрядов хранимых слов при параллельном включении входов микросхем и увеличении числа хранимых слов при включении параллельно адресных входов микросхем

Структура микропроцессора Устройство управления Устройство управления является функционально наиболее сложным устройством ПК. Оно вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки машины. Упрощенная функциональная схема УУ показана на рис. 4.5. Здесь представлены: Рис. 4.5.Укрупненная функциональная схема устройства управления Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции. Регистр команд расположен в интерфейсной части МП, в блоке регистров команд. Дешифратор операций – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов. Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Импульс по выбранному дешифратором операций в соответствии с кодом операции считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов. Узел формирования адреса (находится в интерфейсной части МП) – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП. Кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
  • выборки из регистра-счетчика адреса команды MПП адреса ячейки ОЗУ, где хранится очередная команда программы;
  • выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
  • расшифровки кода операции и признаков выбранной команды;
  • считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
  • считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
  • выборки операндов (по сформированным адресам) и выполнения заданной операции обработки этих операндов;
  • записи результатов операции в память;
  • формирования адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ (рис. 4.6) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Рис. 4.6.Функциональная схема АЛУ Сумматор – вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов; сумматор имеет разрядность двойного машинного слова. Регистры - быстродействующие ячейки памяти различной длины: регистр 1 (Рг1) имеет разрядность двойного слова, а регистр 2 (Рг2) – разрядность слова. При выполнении операций в Рг1 помещается первое число, участвующее в операции, а по завершении операции – результат; в Рг2 – второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может и принимать информацию с кодовых шин данных, и выдавать информацию на них, регистр 2 только получает информацию с этих шин. Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ. АЛУ выполняет арифметические операции (+, -, *, :) только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами. Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам. Микропроцессорная память Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т.е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами – тысячными долями микросекунды). Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях; МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны: от 14 двухбайтных регистров у МП 8086 до нескольких десятков регистров разной длины у МП Pentium . Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур. Интерфейсная часть микропроцессора Интерфейсная часть МП предназначена для связи и согласования МП с системной шиной ПК, а также для приема, предварительного анализа команд выполняемой программы и формирования полных адресов операндов и команд. Интерфейсная часть включает в свой состав адресные регистры МПП, узел формирования адреса, блок регистров команд, являющийся буфером команд в МП, внутреннюю интерфейсную шину МП и схемы управления шиной и портами ввода-вывода. Порты ввода-вывода – это пункты системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами. Всего портов у МП может быть 65536. Каждый порт имеет адрес – номер порта, соответствующий адресу ячейки памяти, являющейся частью устройства ввода-вывода, использующего этот порт, а не частью основной памяти компьютера. Порт устройства содержит аппаратуру сопряжения и два регистра памяти – для обмена данными и обмена управляющей информацией. Некоторые внешние устройства используют и основную память для хранения больших объемов информации, подлежащей обмену. Многие стандартные устройства (НЖМД, НГМД, клавиатура, принтер, сопроцессор и др.) имеют постоянно закрепленные за ними порты ввода-вывода. Схема управления шиной и портами выполняет следующие функции:
  • формирование адреса порта и управляющей информации для него (переключение порта на прием или передачу и др.);
  • прием управляющей информации от порта, информации о готовности порта и его состоянии;
  • организацию сквозного канала в системном интерфейсе для передачи данных между портом устройства ввода-вывода и МП.
Схема управления шиной и портами использует для связи с портами кодовые шины инструкций, адреса и данных системной шины: при доступе к порту МП посылает сигнал по КШИ, который оповещает все устройства ввода-вывода, что адрес на КША является адресом порта, а затем посылает и сам адрес порта. То устройство, адрес порта которого совпадает, дает ответ о готовности, после чего по КШД осуществляется обмен данными.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Новгородский Государственный университет им. Я. Мудрого

Реферат

На тему «Постоянные запоминающие устройства. Основные характеристики, область применения»

Выполнила: студентка 1 курса гр. 5261

Бронина Ксения

Проверила: Архипова Гелиря Асхатовна

Великий Новгород, 2016 г

1. Понятие постоянного запоминающего устройства

1.1 Основные характеристики ПЗУ

1.2 Классификация ПЗУ

1.2.1 По типу исполнения

1.2.2 По разновидностям микросхем ПЗУ

1.2.3 По способу программирования микросхем (записи в них прошивки)

2. Применение

3. Исторические типы ПЗУ

Литература

1. Понятие постоянного запоминающего устройства

Постоянное запоминающее устройство (ПЗУ, или ROM-- Read Only Memory, память только для чтения) также строится на основе установленных на материнской плате модулей (кассет) и используется для хранения неизменяемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS) и т. д.

К постоянной памяти относят постоянное запоминающее устройство, ПЗУ (в англоязычной литературе - Read Only Memory, ROM, что дословно переводится как "память только для чтения"), перепрограммируемое ПЗУ, ППЗУ (в англоязычной литературе - Programmable Read Only Memory, PROM), и флэш-память (flash memory). Название ПЗУ говорит само за себя. Информация в ПЗУ записывается на заводе-изготовителе микросхем памяти, и в дальнейшем изменить ее значение нельзя. В ПЗУ хранится критически важная для компьютера информация, которая не зависит от выбора операционной системы. Программируемое ПЗУ отличается от обычного тем, что информация на этой микросхеме может стираться специальными методами (например, лучами ультрафиолета), после чего пользователь может повторно записать на нее информацию. Эту информацию будет невозможно удалить до следующей операции стирания информации.

К ПЗУ принято относить энергонезависимые постоянные и «полупостоянные» запоминающие устройства, из которых оперативно можно только считывать информацию, запись информации в ПЗУ выполняется вне ПК в лабораторных условиях или при наличии специального программатора и в компьютере. По технологии записи информации можно выделить ПЗУ следующих типов:

§ микросхемы, программируемые только при изготовлении, -- классические или масочные ПЗУ или ROM;

§ микросхемы, программируемые однократно в лабораторных условиях, -- программируемые ПЗУ (ППЗУ), или programmable ROM (PROM);

§ микросхемы, программируемые многократно, -- перепрограммируемые ПЗУ или erasable PROM (EPROM). Среди них следует отметить электрически перепрограммируемые микросхемы EEPROM (Electrical Erasable PROM), в том числе флеш-память.

1.1 Основные характеристики ПЗУ

Данные в постоянном запоминающем устройстве (ПЗУ) хранятся постоянно. Данные, хранящиеся постоянно, называются энергонезависимыми, что означает, что они сохраняются в ПЗУ даже при выключении питания. Как только данные записаны в ПЗУ, они могут считываться другими устройствами, но новые данные быть записаны в ПЗУ не могут.

ПЗУ наиболее широко используется для хранения так называемой “программы монитора”. Программа монитора это машинная программа, позволяющая пользователю микрокомпьютерной системы просматривать и изменять все функции системы, включая память. Другим широким применением ПЗУ является хранение фиксированных таблиц данных, таких как математические функции, которые никогда не меняются.

Цифровыми компьютерными системами широко используются четыре типа ПЗУ: ПЗУ с масочным программированием, программируемое ПЗУ (ППЗУ), стираемое программируемое ПЗУ (СППЗУ) и электрически программируемое ПЗУ (ЭППЗУ).

1.2 Классификация ПЗУ

1.2.1 По типу исполнения

Массив данных совмещён с устройством выборки (считывающим устройством), в этом случае массив данных часто в разговоре называется «прошивка»:

§ микросхема ПЗУ;

§ Один из внутренних ресурсов однокристальной микро ЭВМ (микроконтроллера), как правило FlashROM.

Массив данных существует самостоятельно :

§ компакт-диск;

§ перфокарта;

§ перфолента;

§ штрих-коды;

§ монтажные «1» и монтажные «0».

1.2.2 По разновидностям микросхем ПЗУ

По технологии изготовления кристалла:

§ RO M англ. read-only memory - постоянное запоминающее устройство, масочное ПЗУ, изготавливается фабричным методом. В дальнейшем нет возможности изменить записанные данные.

Рисунок 1. Масочное ПЗУ

§ PRO M англ. programmable read-only memory -- программируемое ПЗУ, однократно «прошиваемое» пользователем.

Рисунок 2. Программируемое ПЗУ

§ EPROM англ. erasable programmable read-only memory - перепрограммируемое/репрограммируемое ПЗУ (ПППЗУ/РПЗУ)). Например, содержимое микросхемы К573РФ1 стиралось при помощи ультрафиолетовой лампы. Для прохождения ультрафиолетовых лучей к кристаллу в корпусе микросхемы было предусмотрено окошко с кварцевым стеклом.

Рисунок 3. Перепрограммируемое ПЗУ

§ EEPROM англ. electrically erasable programmable read-only memory - электрически стираемое перепрограммируемое ПЗУ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных накопителях. Одной из разновидностей EEPROM является флеш-память (англ. flash memory).

Рисунок 4. Стираемое ПЗУ

§ ПЗУ на магнитных доменах, например К1602РЦ5, имело сложное устройство выборки и хранило довольно большой объём данных в виде намагниченных областей кристалла, при этом не имея движущихся частей (см. Компьютерная память). Обеспечивалось неограниченное количество циклов перезаписи.

§ NVRAM, non-volatile memory -- «неразрушающаяся» память, строго говоря, не является ПЗУ. Это ОЗУ небольшого объёма, конструктивно совмещённое с батарейкой. В СССР такие устройства часто назывались «Dallas» по имени фирмы, выпустившей их на рынок. В NVRAM современных ЭВМ батарейка уже конструктивно не связана с ОЗУ и может быть заменена.

По виду доступа :

§ С параллельным доступом (parallel mode или random access): такое ПЗУ может быть доступно в системе в адресном пространстве ОЗУ. Например, К573РФ5;

§ С последовательным доступом: такие ПЗУ часто используются для однократной загрузки констант или прошивки в процессор или ПЛИС, используются для хранения настроек каналов телевизора, и др. Например, 93С46, AT17LV512A.

1.2.3 По способу программирования микросхем (записи в них прошивки)

§ Непрограммируемые ПЗУ;

§ ПЗУ, программируемые только с помощью специального устройства -- программатора ПЗУ (как однократно, так и многократно прошиваемые). Использование программатора необходимо, в частности, для подачи нестандартных и относительно высоких напряжений (до +/- 27 В) на специальные выводы.

§ Внутрисхемно (пере)программируемые ПЗУ (ISP, in-system programming) -- такие микросхемы имеют внутри генератор всех необходимых высоких напряжений, и могут быть перепрошиты без программатора и даже без выпайки из печатной платы, программным способом.

запоминающий микросхема программирование моноскоп

2. Применение

В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различными контроллерами, или компьютером (BIOS или OpenBoot на машинах SPARC).

BootROM -- прошивка, такая, что если её записать в подходящую микросхему ПЗУ, установленную в сетевой карте, то становится возможна загрузка операционной системы на компьютер с удалённого узла локальной сети. Для встроенных в ЭВМ сетевых плат BootROM можно активировать через BIOS.

ПЗУ в IBM PC-совместимых ЭВМ располагается в адресном пространстве с F600:0000 по FD00:0FFF

3. Исторические типы ПЗУ

Постоянные запоминающие устройства стали находить применение в технике задолго до появления ЭВМ и электронных приборов. В частности, одним из первых типов ПЗУ был кулачковый валик, применявшийся в шарманках, музыкальных шкатулках, часах с боем.

С развитием электронной техники и ЭВМ возникла необходимость в быстродействующих ПЗУ. В эпоху вакуумной электроники находили применение ПЗУ на основе потенциалоскопов, моноскопов, лучевых ламп. В ЭВМ на базе транзисторов в качестве ПЗУ небольшой ёмкости широко использовались штепсельные матрицы. При необходимости хранения больших объёмов данных (для ЭВМ первых поколений -- несколько десятков килобайт) применялись ПЗУ на базе ферритовых колец (не следует путать их с похожими типами ОЗУ). Именно от этих типов ПЗУ и берёт своё начало термин «прошивка» -- логическое состояние ячейки задавалось направлением навивки провода, охватывающего кольцо. Поскольку тонкий провод требовалось протягивать через цепочку ферритовых колец для выполнения этой операции применялись металлические иглы, аналогичные швейным. Да и сама операция наполнения ПЗУ информацией напоминала процесс шитья.

Литература

Угрюмов Е. П. Цифровая схемотехника БХВ-Петербург (2005) Глава 5.

Размещено на Allbest.ru

Подобные документы

    Иерархия запоминающих устройств ЭВМ. Микросхемы и системы памяти. Оперативные запоминающие устройства. Принцип работы запоминающего устройства. Предельно допустимые режимы эксплуатации. Увеличение объема памяти, разрядности и числа хранимых слов.

    курсовая работа , добавлен 14.12.2012

    Запоминающие устройства: винчестеры, дискеты,стримеры, флэш-карты памяти, MO-накопители, оптические: CD-R, CD-RW, DVD-R, DVD-RW, и новейшие запоминающие устройства. Информацию необходимо сохранять на носителях, не зависящих от наличия напряжения.

    реферат , добавлен 01.03.2006

    Понятие информации, ее измерение, количество и качество информации. Запоминающие устройства: классификация, принцип работы, основные характеристики. Организация и средства человеко-машинного интерфейса, мультисреды и гиперсред. Электронные таблицы.

    отчет по практике , добавлен 09.09.2014

    Проектирование программатора микросхем AT17C010, обоснование режимов функционирования узлов микроконтроллера, аппаратных средств, достаточности программных ресурсов. Принципиальная схема устройства, рекомендации по разработке диагностических средств.

    курсовая работа , добавлен 19.12.2010

    Проектирование элементов микросхем ПЗУ и ОЗУ с помощью приложения MS Visio 2010. Деление и расширение адресного пространства. Расчет дополнительного оперативного запоминающего устройства и проверка компонентов системы на электрическое взаимодействие.

    курсовая работа , добавлен 08.11.2014

    Запоминающие устройства компьютера. Создание системы памяти. Характеристика микросхем динамических запоминающих устройств. Выполнение арифметических, логических или служебных операций. Ярусно-параллельная форма алгоритма. Степень и уровни параллелизма.

    презентация , добавлен 28.03.2015

    Микропроцессорный комплект cерии КР580 - набор микросхем. Основные элементы КР580ВМ80А - 8-разрядный микропроцессора, полный аналог микропроцессора Intel i8080. Применение микропроцессоров в игровых автоматах. Версии выпуска микросхем, и их применение.

    реферат , добавлен 18.02.2010

    Cравнение двух важнейших характеристик - емкость памяти и ее быстродействие. Регистры общего назначения. Функции оперативного запоминающего устройства. Наиболее распространенная форма внешней памяти - жесткий диск. Три основных типа оптических носителей.

    реферат , добавлен 15.01.2015

    Основные составляющие системного блока. Назначение материнской платы. Базовая система ввода-вывода – Bios. Понятие периферийного устройства. Запоминающие устройства и их виды. Открытая архитектура в устройстве ПК. Устройства для ввода и вывода данных.

    реферат , добавлен 18.12.2009

    Расчет статического модуля оперативной памяти и накопителя. Построение принципиальной схемы и временной диаграммы модуля оперативного запоминающего устройства. Проектирование арифметико-логического устройства для деления чисел с фиксированной точкой.

Постоянные запоминающие устройства (ПЗУ) предназначены для хранения информации, например, таблиц, программ, каких-либо констант. Информация в ПЗУ хранится при отключенном источнике питания, т. е. ПЗУ являются энергонезависимыми микросхемами памяти и работают только в режиме многократного считывания информации.

По способу занесения информации в ПЗУ (программирования) их делят на 3 группы:

§ Однократно программируемые изготовителем, называемые масочными (заказными) или сокращенно ПЗУМ, а по буржуйски ROM.

§ Однократно программируемые пользователем (обычно способом пережигания плавких перемычек на кристалле) или ППЗУ, а по буржуйски PROM.

§ Многократно программируемые пользователем (репрограммируемые) или РПЗУ. По-буржуйски EPROM.

В однократно программируемых ПЗУ вместо элемента памяти, как в ОЗУ, ставится перемычка между шинами в виде пленочных проводников, диодов, транзисторов. Наличие перемычки соответствует лог. 1, ее отсутствие - лог. 0 или наоборот. Процесс программирования таких ПЗУ заключается в пережигании ненужных перемычек и поэтому в дальнейшем ПЗУ такого рода программировать нельзя.

Репрограммируемое ПЗУ

Репрограммируемые ПЗУ разделяются на два класса:

§ С режимом записи и стирания электрическим сигналом.

§ С режимом записи электрическим сигналом и стиранием ультрафиолетовым излучением.

Микросхемы РПЗУ допускают возможность многократного программирования (от сотен до тысяч циклов), способны сохранять информацию при отсутствии питания несколько тысяч часов, требуют значительного времени на перепрограммирование (что исключает возможность использовать в качестве ОЗУ), имеют сравнительно большое время считывания.

Элементом памяти в РПЗУ является полевой транзистор со структурой МНОП или МОП с плавающим затвором или ЛИЗМОП - МОП транзистор с лавинной инжекцией заряда. Эти транзисторы под воздействием программирующего напряжения способны записать электрический заряд под затвором и сохранять его много тысяч часов без напряжения питания. Для того, чтобы перепрограммировать такое ПЗУ необходимо сначала стереть записанную ранее информацию. В РПЗУ на МНОП транзисторах стирание производится электрическим сигналом, который вытесняет накопленный под затвором заряд. В РПЗУ на ЛИЗМОП транзисторах стирание записанной информации происходит под воздействием ультрафиолетового (УФ) излучения, которое облучает кристалл через специальное окно в корпусе микросхемы.



РПЗУ со стиранием УФ излучением имеют ряд недостатков, по сравнению с РПЗУ со стиранием электрическим сигналом. Так, например, для стирания информации УФ необходимо вынимать микросхему из контактных устройств (панелек), что не совсем удобно. К тому же, наличие окна в корпусе обуславливает чувствительность микросхемы РПЗУ к свету, что увеличивает вероятность случайного стирания информации. Да и число циклов перепрограммирования всего лишь нескольких десятков, когда у РПЗУ со стиранием электрическим сигналом это же число достигает 10000.

Элементы памяти ПЗУ (РПЗУ).

Основное требование к такой ячейке – сохранение информации при отключенном питании. Рассмотрим схему однотранзисторной ЗЯ для биполярного ПЗУ.

В эмиттерной цепи транзистора предусмотрена плавкая перемычка (П), которая в необходимых случаях может разрушаться при первоначальном программировании.

При обращении к ЗЯ по адресной линии в случае неразрушенной перемычки в РЛ будет протекать эмитерный ток транзистора. В случае разрушенной перемычки ток протекать не будет.

Элемент памяти ПЗУ может быть выполнен и на МОП-транзисторах. Однако биполярные ПЗУ имеют более высокое быстродействие (время обращения 20…60 нс), но и большую рассеиваемую мощность, чем ПЗУ на МОП-транзисторах (время обращения 200…600 нс).

Репрограммируемые ПЗУ в настоящее время выполняются двух типов. В РПЗУ первого типа матрица элементов памяти изготавливается аналогично матрице ПЗУ на основе МОП-транзисторов, но у которых между металлическим затвором и слоем изолирующего окисла осаждается тонкий слой нитрида кремния (МНОП-транзисторы). Нитрид кремния способен захватывать и сохранять длительное время (до 10 лет и более) электрический заряд. В исходном состоянии транзистор имеет высокое напряжение открывания (10…15)В, которое понижается до рабочих уровней после зарядки слоя нитрида кремния. Чтобы зарядить слой нитрида кремния, на затвор МНОП-транзистора подается высоковольтный программирующий импульс, по амплитуде в несколько раз превышающий рабочие уровни напряжений (15…20)В. При подаче сигнала на адресную линию, подключенную к затворам транзисторов, происходит открывание только заряженных транзисторов. Таким образом, наличие заряда приводит к тому, что ЭП хранит 0, а его отсутствие – 1.



Для стирания записанной информации, т.е. удаления заряда захваченного слоем нитрида кремния, на затвор МНОП-транзистора необходимо подать импульс напряжения противоположный, чем при записи полярности.

Другие варианты ЭП РПЗУ выполняются на МНОП-транзисторах плавающим (изолированным) затвором. Подача высокого напряжения между истоком и стоком вызывает накопление в плавающем затворе заряда, создающего проводящий канал между стоком и истоком. Стирание информации осуществляется облучением транзисторов через кварцевое окно ультрафиолетовым излучением, которое разряжает затворы транзисторов и переводит их в непроводящее состояние.

Стирание информации таким способом имеет ряд очевидных недостатков, которые отсутствуют при электрическом стирании. Для этого в транзисторе выполняется второй управляющий затвор. Однако, ввиду большой площади ЭП, микросхемы РПЗУ с электрическим стиранием имеют в 2…4 раза меньшую информационную емкость, чем микросхемы со стиранием ультрафиолетовым светом.

Вопрос

Аналоговая схемотехника

Несмотря на все достижения цифровой вычислительной техники, в ряде случаев оказывается рационально производить математические вычисления с аналоговыми сигналами в аналоговом виде. Особенно если в окончательном виде необходимо получить результат в виде аналогового сигнала. Вычислительное устройство в этом случае получается намного проще цифрового и намного более быстродействующее. В аналоговом виде можно совершать все основные арифметические операции, операции логарифмирования и антилогарифмирования, дифференцирования и интегрирования и решение систем линейных дифференциальных уравнений. До того, как появились цифровые вычислительные устройства, в научных исследованиях широко использовались аналоговые вычислительные машины. Теперь их время кончилось, но при решении конкретных задач электроники все еще можно в ряде случаев с успехом использовать аналоговые методы вычислений. Погрешность вычислений в аналоговом виде обычно не превышает 1% и результат получается за время порядка 1 микросекунды. Хотя точность получается намного хуже, чем при цифровых методах вычислений, но все же может оказаться приемлемой. Зато по быстродействию аналоговые вычислительные устройства могут иметь преимущество перед цифровыми.

Усилительный каскад

Существенное уменьшение дрейфа нуля в усилителе постоянного тока достигается с помощью схемного решения, которое реализуется в дифференциальном усилительном каскаде. В основу его построения положен принцип сбалансированного моста. Известно, что баланс моста (см. рис.2.15) сохраняется как при изменении подводимого к нему напряжения, так и при изменении сопротивления резисторов, если выполняется условие

Данное свойство моста уменьшают влияние нестабильности источника питания и изменения параметров элементов схемы на процесс усиления входного сигнала.

На рис.2.16 представлена схема, с помощью которой объясняется принцип работы дифференциального усилительного каскада. Схема состоит из двух частей: мостовой и источника стабильного тока, представленные в виде источника тока I э . В мостовой части схемы два плеча моста образуются резисторами R и R (аналоги резисторам R и R схемы рис.2.15), а два других транзисторами Т и Т (аналоги резисторам R и R схемы рис.2.15). Выходное напряжение снимается с коллекторов транзисторов, т.е. с диагонали моста. Оно равно нулю при балансе моста, который достигается при работе одинаковых по параметрам транзисторов Т и Т в одинаковых режимах, а также одинаковых сопротивлениях резисторов R и R . Если при повышении температуры в процессе работы этих элементов значения их параметров изменяются одинаково, то условие (2.18) выполняется. Идентичность параметров соответствующих элементов мостовой части схемы обеспечивается технологией изготовления интегральных микросхем, в состав которых входят дифференциальные каскады.

Рис. 2.15. Схема четырехплечего Рис.2.16. Схема дифференциального моста усилительного каскада

Вопрос

Операционный усилитель - это электронный усилитель напряжения с высоким коэффициентом усиления, имеющий дифференциальный вход и обычно один выход. Напряжение на выходе может превышать разность напряжений на входах в сотни или даже тысячи раз.

Обозначения на схеме

Выводы для подачи напряжения питания (V S+ и V S-) могут обозначаться по-разному. Невзирая на различное обозначение, их функция остаётся одной и той же - обеспечение дополнительной энергии для усиления сигнала.

1) Суммирующие и вычитающие устройства на ОУ

2) Измерительные усилители на ОУ

3) Интегратор

4) Дифференциатор

Вопрос

Статические параметры ОУ:

Коэффициент усиления KД . Является основным параметром ОУ на очень низкой частоте. Он определяется отношением выходного напряжения Uвых ОУ без ОС в режиме холостого хода к дифференциальному (разностному). Uвх.д = Uвх1 - Uвх.

Передаточная характеристика ОУ по постоянному току - это зависимость постоянного

выходного напряжения Uвых от постоянного входного дифференциального сигнала Uвх.д.

Коэффициент ослабления синфазного сигнала K ос. сф = K Д/K с . Можноопределить, если подать на оба входа ОУ одинаковые напряжения, обеспечив при этом нулевое значение

U вх. д. Выходное напряжение также должно остаться равным нулю.

Входное сопротивление . Это сопротивление ОУ по отношению к входному сигналу.

Выходное сопротивление ОУ (R д. вых) . Определяется как для любого дру-

гого усилителя.

Минимальное сопротивление нагрузки (R H min) . Его значение определяется предельным выходным током при номинальном выходном напряжении.

Входное напряжение смещения (U вх. см) . Определяет постоянное напряжение, которое следует присоединить к входу ОУ, чтобы выходное напряжение стало равным нулю. Этот параметр учитывает разбаланс и несимметрию входного дифференциального каскада ОУ.

Входной ток смещения (I вх. см) . Равен среднему арифметическому значению двух входных токов ОУ при выходном напряжении, равном нулю, т. е. I вх. см = (I вх1 + I вх2)/2.

Разность входных токов (ΔI вх = I вх1 - I вх2) . Это абсолютное значение разности токов двух входов ОУ при выходном напряжении, равном нулю. Этот параметр, подобно U вх.см, также в значительной степени характеризует величину несимметрии входных каскадов ОУ.

Температурный дрейф напряжения смещения ΔU вх. см/Δt и разности входных токов ΔI вх/Δt . Температурный дрейф соответствует изменению одного из параметров, вызванному изменением температуры окружающей среды на 1 °C.

Коэффициент влияния нестабильности источника напряжения питания K вл. п . Это отношение изменения напряжения смещения к вызвавшему его изменению одного из питающих напряжений U п.

Характеристики:

Амплитудно-частотная и фазово-частотная характеристики . Операцион-

ные усилители, имеющие трехкаскадную структуру для малого сигнала, об-

ладают амплитудно-частотной характеристикой (АЧХ) с тремя полюсами.

Переходная характеристика ОУ . Переходная характеристика ОУ

позволяет в режиме малого сигнала определить линейные искажения им-

пульсного сигнала, в том числе время нарастания выходного сигнала при

воздействии единичного напряжения на входе усилителя.

Скорость нарастания выходного напряжения V U = ΔU вых/Δt .

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже


Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением

Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя

Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Инвертирующий усилитель

Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже


Схема инвертирующего усилителя.

Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид

Тогда коэффициент усиление данной схемы будет равен

Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже


Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит

Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже


Дифференциатор на операционном усилителе.

Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит


Top