Системные свойства модели. Основы моделирования систем. Общая характеристика процессов сбора, передачи и обработки информации

Модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  • Познание действительности
  • Проведение экспериментов
  • Проектирование и управление
  • Прогнозирование поведения объектов
  • Тренировка и обучения специалистов
  • Обработка информации

Классификация по форме представления

  1. Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
    • a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
    • b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
    • c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  2. Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
    • 2.1. Вербальные - словесное описание на естественном языке).
    • 2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).
      • 2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.
      • 2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.
      • 2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  3. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...
    • 3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
    • 3.2. Частично формализованные .
      • 3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
      • 3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
      • 3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
    • 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  • Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • Упрощенность : модель отображает только существенные стороны объекта;
  • Приблизительность : действительность отображается моделью грубо или приблизительно;
  • Адекватность : насколько успешно модель описывает моделируемую систему;
  • Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;
  • Потенциальность : предсказуемость модели и её свойств;
  • Сложность : удобство её использования;
  • Полнота : учтены все необходимые свойства;
  • Адаптивность .
Так же необходимо отметить:
  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

2. Общие признаки и свойства моделей.

Общие признаки моделей

1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

2. Каждому материальному объекту соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

3. Паре задача-объект соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

4. Модель всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего.

5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

6. В частном случае роль объекта моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некая идеальная конструкция, т.е. по сути дела другая модель, созданная ранее и практически достоверная.

СВОЙСТВА МОДЕЛЕЙ

1) конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

2) упрощенность: модель отображает только существенные стороны объекта;

3) приблизительность: действительность отображается моделью приблизительно;

4)·адекватность: степень успешности описания моделью объекта моделирования;

5) информативность: модель должна содержать достаточную информацию о системе – в рамках гипотез, принятых при построении модели.


- целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
- конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
- упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
приблизительность - действительность отображается моделью грубо или приблизительно;
- адекватность - модель должна успешно описывать моделируемую систему;
- наглядность, обозримость основных ее свойств и отношений;
- доступность и технологичность для исследования или воспроизведения;
- информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
- полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
- устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
- целостность - модель реализует некоторую систему (т.е. целое);
- замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
- адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
- управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
- эволюционируемость – возможность развития моделей (предыдущего уровня).

  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность...


  • Основные свойства моделей . - целенаправленность - модель


  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность - м.


  • Основные свойства средней арифметической. Для снижения трудоемкости расчетов используются основные свойства ср.арифм-кой


  • Основные свойства живых организмов. А) Единство химического состава.
    Оно связано с приобретением организмами новых признаков и свойств .


  • Два свойства общ. благ: 1)неконкурентность, т.е. увеличение числа потребителей блага не влечет за собой снижение полезности, доставляемой каждому из них.


  • Модель скользящих нитей Хаксли и ее основные положения.
    Вода является средой с большим количеством водородных связей, именно они определяют особые свойства воды
  • II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  • II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  • II. Основные этапы развития физики Становление физики (до 17 в.).
  • II.4. Классификация нефтей и газов по их химическим и физическим свойствам
  • III.2.1) Понятие преступления, его основные характеристики.
  • Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

    Например, математические описания (модели ) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. могут считаться одинаковыми с точки зрения их описания, хотя сами процессы различны.

    Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

    Как правило модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С.

    Модель можно представить формально в виде: М = < O, Z, A, B, C >.

    Основные свойства любой модели :

    • целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
    • конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
    • упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
    • приблизительность - действительность отображается моделью грубо или приблизительно;
    • адекватность - модель должна успешно описывать моделируемую систему;
    • наглядность, обозримость основных ее свойств и отношений;
    • доступность и технологичность для исследования или воспроизведения;
    • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
    • сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
    • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
    • устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
    • целостность - модель реализует некоторую систему, т.е. целое;
    • замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
    • адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
    • управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
    • возможность развития моделей (предыдущего уровня).

    Жизненный цикл моделируемой системы:

    • сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;
    • проектирование структуры и состава моделей (подмоделей);
    • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
    • исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
    • исследование адекватности, устойчивости, чувствительности модели;
    • оценка средств моделирования (затраченных ресурсов);
    • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
    • генерация отчетов и проектных (народно-хозяйственных) решений;
    • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

    Моделирование – есть метод системного анализа.



    Часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы.

    Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

    Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.

    В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

    Моделирование рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом, т.е. простым или обычным экспериментом, а над копией оригинала. Здесь важен изоморфизм систем оригинальной и модельной. Изоморфизм - равенство, одинаковость, подобие.

    Модели и моделирование применяются по основным направлениям:

    • в обучении (как моделям, моделированию, так и самих моделей);
    • в познании и разработке теории исследуемых систем;
    • в прогнозировании (выходных данных, ситуаций, состояний системы);
    • в управлении (системой в целом, отдельными ее подсистемами), в выработке управленческих решений и стратегий;
    • в автоматизации (системы или ее отдельных подсистем).
    
    Top