Как устроен трансформатор напряжения. Электрические трансформаторы. Принцип действия и режимы работы

Название "трансформатор" произошло от латинского слова «transforмare», что значит "превращать, преобразовывать". Именно в этом и заключается его суть - преобразование путем магнитной индукции переменного тока одного напряжения в переменный ток другого напряжения, но аналогичной частоты. Главное назначение трансформатора - использование в электросетях и источниках питания разнообразных приборов.

Устройство и принцип действия

Трансформатор - это прибор для преобразования переменного тока и напряжения , не имеющий подвижных частей.

Устройство трансформаторов состоит из одной или нескольких обособленных проволочных, иногда ленточных катушек (обмоток), которые охвачены единым магнитным потоком. Катушки, как правило, наматывают на сердечник (магнитопровод). Обычно он изготавливается из ферромагнитного материала.

На рисунке схематично представлен принцип работы трансформатора.

На рисунке видно, что первичная обмотка подсоединена к источнику переменного тока, а другая (вторичная) - к нагрузке. В витках первичной обмотки при этом проистекает переменный ток, его величина I1. А обе катушки охватывает магнитный поток Ф, производящий в них электродвижущую силу.

Если вторичная обмотка находится без нагрузки, то такой режим работы преобразователя называется «холостой ход». Когда вторичная катушка под нагрузкой, в ней под действием электродвижущей силы возникает ток I2.

Выходное напряжение при этом зависит напрямую от того, сколько витков на катушках, а сила тока - от диаметра (сечения) провода. Другими словами, если обе катушки имеют равное количество витков, то напряжение на выходе будет равно напряжению на входе. А если на вторичную катушку намотать в 2 раза больше витков, то и напряжение на выходе станет в 2 раза выше входного.

Итоговый ток зависит также и от диаметра провода обмотки. Например, при большой нагрузке и маленьком диаметре провода может произойти перегрев обмотки, нарушение целостности изоляции и даже полный выход из строя трансформатора.

Во избежание таких ситуаций составлены таблицы для расчета преобразователя и выбора диаметра провода под заданное выходное напряжение.

Классификация по видам

Трансформаторы принято классифицировать по нескольким признакам: по назначению, по способу установки, по типу изоляции, по используемому напряжению и т. д. Рассмотрим самые распространенные виды приборов.

Силовые преобразователи

Такой вид приборов применяется для подачи и приема электрической энергии на ЛЭП и с ЛЭП с напряжением до 1150 квт. Отсюда и название - силовой. Эти приборы функционируют на низких частотах - порядка 50−60 Гц. Их конструктивными особенностями является то, что они могут содержать несколько обмоток, которые располагаются на броневом сердечнике, изготовленном из электротехнической стали. Причем катушки низкого напряжения могут быть запитаны параллельно.

Такой прибор носит название трансформатор с расщепленными обмотками. Обычно силовые трансформаторы помещают в емкость с трансформаторным маслом, а самые мощные агрегаты охлаждают активной системой. Для установки на подстанциях и электростанциях используют трехфазные приборы мощностью до 4 тыс. кВА. Они получили наибольшее распространение, так как потери в них уменьшены на 15% по сравнению с однофазными.

Автотрансформаторы (ЛАТР)

Это особая разновидность низкочастотного прибора. В нем вторичная обмотка одновременно является частью первичной и наоборот. То есть катушки связываются не только магнитно, но и электрически. Разное напряжение получается и с одной обмотки , если сделано несколько выводов. За счет использования меньшего количества проводов достигается удешевление прибора. Однако при этом отсутствует гальваническая развязка обмоток, а это уже существенный недочет.

Автотрансформаторы нашли применение в высоковольтных сетях и в установках автоматического управления, для запуска двигателей переменного тока. Целесообразно их использование при невысоких коэффициентах трансформации. ЛАТР применяют для регулировки напряжения в лабораторных условиях.

Трансформаторы тока

В таких приборах первичная обмотка подсоединяется непосредственно к источнику тока, а вторичная - к приборам с небольшим внутренним сопротивлением. Это могут быть защитные или измерительные устройства. Самым распространенным видом трансформатора тока считается измерительный.

Он состоит из сердечника, выполненного из шихтованной кремнистой холоднокатаной электротехнической стали, с намотанной на него одной или несколькими обособленными вторичными обмотками. В то время как первичная может представлять собой просто шину или же провод с измеряемым током, пропущенным при этом сквозь окошко магнитопровода. По такому принципу функционируют, к примеру, токоизмерительные клещи. Главной характеристикой трансформаторного тока является коэффициент трансформации.

Такие преобразователи безопасны и поэтому нашли применение при измерении тока и в схемах релейной защиты.

Импульсные преобразователи

В современном мире импульсные системы практически полностью заменили тяжелые низкочастотные трансформаторы. Обычно импульсный прибор выполняется на ферритовом сердечнике разнообразных форм и размеров:

  • кольцо;
  • стержень;
  • чашечка;
  • в виде буквы Ш;
  • П-образный.

Превосходство таких приборов сомнениям не подлежит - они способны функционировать на частотах до 500 и более кГц.

Так как это прибор высокочастотный, то его размеры существенно снижаются с ростом частоты. На обмотку расходуется меньшее количество провода, а для получения высокочастотного тока в первой цепи достаточно лишь подключения полевого или биполярного транзистора.

Существуют еще много разновидностей трансформаторов: разделительные, согласующие, пик-трансформаторы, сдвоенный дроссель и т. д. Все они широко применяются в современной промышленности.

Область применения приборов

Сегодня, пожалуй, трудно себе представить область науки и техники, где не применяются трансформаторы. Их широко используются для следующих целей:

Исходя из многообразия устройств и видов назначения трансформаторов, можно утверждать, что сегодня они - незаменимые , использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения как гражданских сетей, так и сетей предприятий промышленности.

Вопрос 1. Из чего состоит трансформатор?
Ответ. Простейший трансформатор состоит из замкнутого магнитопровода и двух обмоток в виде цилиндрических катушек.
Одна из обмоток подключается к источнику переменного синусоидального тока с напряжением u 1 и называется первичной обмоткой. К другой обмотке подключается нагрузка трансформатора. Эта обмотка называется вторичной
обмоткой.

Вопрос 2. Как осуществляется передача энергии из одной обмотки в другую?
Ответ. Передача энергии из одной обмотки в другую осуществляется путём электромагнитной индукции. Переменный синусоидальный ток i 1 , протекающий по первичной обмотке трансформатора, возбуждает в магнитопроводе переменный магнитный поток Ф с , который пронизывает витки обеих обмоток и наводит в них ЭДС
и
с амплитудами пропорциональными числам витков w 1 и w 2 . При подключении ко вторичной обмотке нагрузки в ней под действием ЭДС e 2 возникает переменный синусоидальный ток i 2 и устанавливается некоторое напряжение u 2 .
Электрическая связь между первичной и вторичной обмотками трансформатора отсутствует и энергия во вторичную обмотку передаётся посредством магнитного поля, возбуждаемого в сердечнике.

Вопрос 3. Чем является вторичная обмотка трансформатора по отношению к нагрузке?
Ответ. По отношению к нагрузке вторичная обмотка трансформатора является источником электрической энергии с ЭДС e 2 . Пренебрегая потерями в обмотках трансформатора можно считать, что напряжение питающей сети U 1 ≈ E 1 , а напряжение в нагрузке U 2 ≈ E 2 .

Вопрос 4. Что такое коэффициент трансформации?
Ответ. Так как ЭДС обмоток пропорциональны числам витков, то соотношение напряжений питания трансформатора и нагрузки также определяется соотношением чисел витков обмоток, т.е.
U 1 /U 2 ≈ E 1 /E 2 ≈ w 1 /w 2 = k .
Величина k называется коэффициентом трансформации.

Вопрос 5. Какой трансформатор называется понижающим?
Ответ. Если число витков вторичной обмотки меньше числа витков первичной w 2 < w 1 , то k > 1 и напряжение в нагрузке будет меньше напряжения на входе трансформатора. Такой трансформатор называется понижающим.

Вопрос 6. Какой трансформатор называется повышающим?
Ответ. Если число витков вторичной обмотки больше числа витков первичной w 2 > w 1 , то k < 1 и напряжение в нагрузке будет больше напряжения на входе трансформатора. Такой трансформатор называется повышающим.

Вопрос 7. Какая обмотка трансформатора называется обмоткой высшего напряжения (ВН)?
Ответ. Обмотка, подключаемая к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН). Вторая обмотка называется обмоткой низшего напряжения (НН).

Вопрос 8. Какие трансформаторы называются «сухими»?
Ответ. Трансформаторы, в которых отвод тепла производится потоком воздуха, называются «сухими» трансформаторами.

Вопрос 9. Какие трансформаторы называются «масляными»?
Ответ. В тех случаях, когда воздушным потоком невозможно отвести тепловую энергию так, чтобы обеспечить ограничение
температуры изоляции обмоток на допустимом уровне, для охлаждения используют жидкую среду, погружая трансформатор в бак со специальным трансформаторным маслом, которое одновременно выполняет роль хладоагента и электрической изоляции. Такие трансформаторы называются «масляными».

Вопрос 10. Как трансформаторы обозначают на электрических схемах?
Ответ.


На рисунке показаны условные обозначения однофазных двухобмоточных (1, 2, 3) и многообмоточных (7, 8) трансформаторов, а также трёхфазных трансформаторов (12, 13, 14, 15, 16). Здесь же показаны обозначения однофазных (4, 5) и трёхфазных (9, 10) автотрансформаторов и измерительных трансформаторов напряжения (6) и тока (11).

Вопрос 11. Чем определяются условия работы и свойства трансформатора?
Ответ. Условия работы и свойства трансформатора определяются системой параметров, называемых номинальными, т.е. значениями величин, соответствующих расчётному режиму работы трансформатора. Они указываются в справочных данных и на табличке, прикрепляемой к изделию.

Вопрос 12. Как влияет рабочая частота трансформатора на его массу и габариты?
Ответ. Повышение рабочей частоты трансформатора позволяет при прочих равных условиях существенно уменьшить массу и габариты изделия. Действительно, напряжение первичной обмотки примерно равно ЭДС, наводимой в ней магнитным потоком в сердечнике Φ c , а полная мощность, например, однофазного трансформатора равна

где и – заданные номинальные значения индукции в сердечнике и плотности тока в обмотке, а S c ∼ l 2 и S i поперечное сечение сердечника и суммарное сечение w 1 витков обмотки. Следовательно, увеличение частоты питания f позволяет пропорционально уменьшить сечение сердечника при той же мощности трансформатора, т.е. уменьшить в квадрате его линейные размеры l .

Вопрос 13. Для чего служит магнитопровод трансформатора?
Ответ. Магнитопровод трансформатора служит для увеличения взаимной индукции обмоток и в общем случае не является необходимым элементом конструкции. При работе на высоких частотах, когда потери в ферромагнетике становятся недопустимо большими, а также при необходимости получения линейных характеристик, применяются трансформаторы без сердечника, т.н. воздушные трансформаторы. Однако в подавляющем большинстве случаев магнитопровод является одним из трёх основных элементов трансформатора. По конструкции магнитопроводы трансформаторов подразделяются на стрежневые и броневые.

Вопрос 14. Каким условиям должна удовлетворять конструкция обмоток трансформатора?
Ответ. Конструкция обмоток трансформаторов должна удовлетворять условиям высокой электрической и механической прочности, а также термостойкости.
Кроме того, технология их изготовления должна быть по возможности простой, а потери в обмотках минимальными.

Вопрос 15. Из чего изготавливаются обмотки трансформатора?
Ответ. Обмотки изготавливаются из медного или алюминиевого провода. Плотность тока в медных обмотках масляных трансформаторов находится в пределах 2…4,5 А/мм 2 , а в сухих трансформаторах 1,2…3,0 А/мм 2 . Верхние пределы относятся к более мощным трансформаторам. В алюминиевых обмотках плотность тока на 40…45% меньше. Провода обмоток могут быть круглого сечения площадью 0,02…10 мм 2 или прямоугольного сечения площадью 6…60 мм 2 . Во многих случаях катушки обмоток наматываются из нескольких параллельных проводников. Обмоточные провода покрыты эмалевой и хлопчатобумажной или шёлковой изоляцией. В сухих трансформаторах применяются провода с термостойкой изоляцией из стекловолокна.

Вопрос 16. Как подразделяются обмотки трансформатора по способу расположения на стержнях?
Ответ. По способу расположения на стержнях обмотки подразделяются на концентрические и чередующиеся. Концентрические обмотки выполняются в виде цилиндров, геометрические оси которых совпадают с осью стержней. Ближе к стержню обычно располагается обмотка низшего напряжения, т.к. это позволяет уменьшить изоляционный промежуток между обмоткой и стержнем. В чередующихся обмотках катушки ВН и НН поочерёдно располагают вдоль стрежня по высоте. Такая конструкция позволяет увеличить электромагнитную связь между обмотками, но значительно усложняет изоляцию и технологию изготовления обмоток, поэтому в силовых трансформаторах чередующиеся обмотки не используются.

Вопрос 17. Как выполняется изоляция обмоток трансформатора?
Ответ. Одним важнейших элементов конструкции обмоток трансформатора является изоляция.
Различают главную и продольную изоляцию.
Главной называется изоляция обмотки от стержня, бака и других обмоток. Её выполняют в виде изоляционных промежутков, электроизоляционных каркасов и шайб. При малых мощностях и низких напряжениях функцию главной изоляции выполняет каркас из пластика или электрокартона, на который наматываются обмотки, а также несколько слоёв лакоткани или картона, изолирующих одну обмотку от другой.
Продольной называется изоляция между различными точками одной обмотки, т.е. между витками, слоями и катушками. Межвитковая изоляция обеспечивается собственной изоляцией обмоточного провода. Для междуслойной изоляции используются несколько слоёв кабельной бумаги, а междукатушечная изоляция осуществляется либо изоляционными промежутками, либо каркасом или изоляционными шайбами.
Конструкция изоляции усложняется по мере роста напряжения обмотки ВН и у трансформаторов, работающих при напряжениях 200…500 кВ, стоимость изоляции достигает 25% стоимости трансформатора.

Литература: Усольцев Александр Анатольевич. Электрические машины. Учебное пособие. 2013 г.

Обновлено: Сентябрь 7, 2016 автором: admin

Добавить сайт в закладки

Как действует трансформатор?

Трансформатор - это статический (т. е. без движущихся ча­стей) электромагнитный аппарат однофазный или трехфазный, в котором явление взаимоиндукции используется для преобразо­вания электрической энергии. Трансформатор преобразует пере­менный ток одного напряжения в переменный ток той же частоты, но другого напряжения.

Трансформатор имеет несколько электрических, изолированных одна от другой обмоток: однофазный - не менее двух, трехфазный - не менее шести.

Обмотки, соединенные с источником электроэнер­гии, именуются первичными; остальные обмотки, отдающие энергию во внешние цепи, называются вторичными. На рисунке внизу схематически показаны первичная и вторичная обмотки од­нофазного трансформатора; они снабжены общим замкнутым сердечником, собранным из листовой электротехнической стали.

Ферромагнитный сердечник служит для усиления магнитной связи между обмотками, т. е. для того, чтобы большая часть магнитного потока первичной обмотки сцеплялась с витками вторичной обмотки.На рис. справа показан сердечник и шесть обмоток трехфазного трансформатора. Эти обмотки соединяются по схеме звезды или треугольника.

Для улучшения условий охлаждения и изоляции трансформа­тор помещается в бак, заполненный минеральным маслом (про­дуктом перегонки нефти). Это так называемый масляный трансформатор.

При частоте переменного тока примерно свыше 20 кГц приме­нение стального сердечника в трансформаторах нецелесообразно из-за больших потерь в стали от гистерезиса и вихревых токов.

Для высоких частот применяются трансформаторы без фер­ромагнитных сердечников - воздушные трансформа­торы.

Если напряжение на зажимах первичной обмотки, первич­ное напряжение U1, меньше вторичного напряжения U 2, то транс­форматор называется повышающим. Если же первичное на­пряжение больше вторичного, то - понижающим (U1>U2). В соответствии с относительной величиной номинального напря­жения принято различать обмотку высшего на­пряжения (ВН) и обмотку низшего напряжения (НН).

Познакомимся кратко с работой однофазного двухобмоточного трансфор­матора со стальным сердеч­ником. Его рабочий процесс и электрические соотноше­ния можно считать харак­терными в основном для всех видов трансформато­ров.

Напряжение U1, приложенное к зажи­мам первичной обмотки, создает в этой обмотке пе­ременный ток i1.Ток воз­буждает в сердечнике транс­форматора переменный маг­нитный поток Ф. Вследствие периодического изменения этого потока в обеих обмотках трансформатора индуктируются ЭДС.

е1= - w1 (?ф: ?t) и e2= - w2 (?ф:?t), где

w1 и w2 - количество витков той и другой обмоток.

Таким образом, отношение ЭДЕ, индуктируемых в обмотках, равно отношению чисел витков этих обмоток:

е1: e2 = w1: w2

Это коэффициент трансформации трансформатора.

Коэффициент полезного действия трансформатора относи­тельно очень высок, в среднем порядка 98%, что позволяет при номинальной нагрузке считать приближенно одинаковыми первичную мощность, получаемую трансформатором, и вторичную мощность, им отдаваемую, т. е. p1 ? p2 или u1i1 ? u2i2, на основании чего

i1: i2? u2: u1? w 2: w 1

Это отношение мгновенных значений токов и напряжений справедливо и для амплитуд, и для действующих значений:

L1: l2? w 2: w 1?u2: u1,

т. е. отношение токов в обмотках трансформатора (при нагрузке, близкой к номинальной) можно считать обратным отношению напряжений и числу витков соответствующих обмоток. Чем меньше нагрузка, тем больше влияет ток холостого хода, и приведенное приближенное соотношение токов нарушается.

При работе трансформатора совершенно различна роль ЭДС в его первичной и вторичной обмотках. ЭДС, ей индуктируемая в первичной обмотке, возникает как противодействие цепи изменению в ней тока i1. По фазе эта ЭДС почти противоположна напряжению.

Как в цепи, содержащей индуктивность, ток в первичной о б м о тке трансформатора

i1=(u1 + e1) : r1,

где г 1 - активное сопротивление первичной обмотки.

Отсюда получаем уравнение для мгновенного значения первичного напряжения:

u1 = -e1 + i1r1 = w t(?ф: ?t) + i1r1,

которое можно прочитать как условие электрического равновесия: приложенное к зажимам первичной обмотки напряжение u1 всегда уравновешивается ЭДС и падением напряжения в активном сопротивлении обмотки (второй член относительно весьма мал).

Иные условия имеют место во вторичной цепи. Здесь ток i2 создается ЭДС e1, играющей роль ЭДС источника тока, и при активной нагрузке r/н во вторичной цепи этот ток

i2= l2: (r2 +r/н),

где r2- активное сопротивление вторичной обмотки.

В первом приближении воздействие вторичного тока i2 на первичную цепь трансформатора можно описать следующим образом.

Ток i2, проходя по вторичной обмотке, стремится создать в сердечнике трансформатора магнитный поток, определяемый намагничивающей силой (НС) i2w2. Согласно принципу Ленца, этот поток должен иметь направление, обратное направлению главного потока. Иначе можно сказать, что вторичный ток стре­мится ослабить индуктирующий его магнитный поток. Однако такое уменьшение главного магнитного потока Ф т нарушило бы электрическое равновесие:

u 1 = (-е 1) + i1r1,

так как e1 пропорционально магнитному потоку.

Создается пре­обладание первичного напряжения U1, поэтому одновременно с появлением вторичного тока увеличивается первичный ток, при­том настолько, чтобы компенсировать размагничивающее дей­ствие вторичного тока и, таким образом, сохранить электрическое равновесие. Следовательно, всякое изменение вторичного тока должно вызвать соответствующее изменение первичного тока, при этом ток вторичной обмотки, благодаря относительно малому значению составляющей i1r1, почти не влияет на амплитуду и характер изменений во времени главного магнитно­го потока трансформатора. Поэтому амплитуду этого по­тока Ф т можно считать практически постоянной. Такое постоян­ство Фт характерно для режима трансформатора, у которого поддерживается неизменным напряжение U1, приложенное к зажимам первичной обмотки.

Простейший представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.

Содержание:

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и . Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение , счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на . Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством .
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в тока, состоят из определенных .

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток . Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение . Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации . Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность . Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность . Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока . Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.


Top