Линейно зависимые и линейно независимые матрицы. Линейная зависимость и независимость строк матрицы. Методом окаймляющих миноров найти ранг матрицы

Пусть

Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

Теорема 5

Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

Теорема 6

Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

Но . Следовательно, все столбцы матрицы линейно зависимы.

Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

Теорема 7

Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

Доказательство.

Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.



Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

Рассмотрим произвольную, необязательно квадратную, матрицу А размера mxn.

Ранг матрицы.

Понятие ранга матрицы связано с понятием линейной зависимости (независимости) строк (столбцов) матрицы. Рассмотрим это понятие для строк. Для столбцов – аналогично.

Обозначим стоки матрицы А:

е 1 =(а 11 ,а 12 ,…,а 1n); е 2 =(а 21 ,а 22 ,…,а 2n);…, е m =(а m1 ,а m2 ,…,а mn)

e k =e s если a kj =a sj , j=1,2,…,n

Арифметические операции над строками матрицы (сложение, умножение на число) вводятся как операции, проводимые поэлементно: λе k =(λа k1 ,λа k2 ,…,λа kn);

e k +е s =[(а k1 +a s1),(a k2 +a s2),…,(а kn +a sn)].

Строка е называется линейной комбинацией строк е 1 , е 2 ,…,е k , если она равна сумме произведений этих строк на произвольные действительные числа:

е=λ 1 е 1 +λ 2 е 2 +…+λ k е k

Строки е 1 , е 2 ,…,е m называются линейно зависимыми , если существуют действительные числа λ 1 ,λ 2 ,…,λ m , не все равные нулю, что линейная комбинация этих строк равна нулевой строке: λ 1 е 1 +λ 2 е 2 +…+λ m е m =0 ,где0 =(0,0,…,0) (1)

Если линейная комбинация равна нулю тогда и только тогда, когда все коэффициенты λ i равны нулю (λ 1 =λ 2 =…=λ m =0), то строки е 1 , е 2 ,…,е m называются линейно независимыми.

Теорема 1 . Для того, чтобы строки е 1 ,е 2 ,…,е m были линейно зависимы, необходимо и достаточно, чтобы одна из этих строк была линейной комбинацией остальных строк.

Доказательство . Необходимость . Пусть строки е 1 , е 2 ,…,е m линейно зависимы. Пусть, для определенности в (1) λ m ≠0, тогда

Т.о. строка е m является линейной комбинацией остальных строк. Ч.т.д.

Достаточность . Пусть одна из строк, например е m , является линейной комбинацией остальных строк. Тогда найдутся числа такие, что выполняется равенство , которое можно переписать в виде ,

где хотя бы 1 из коэффициентов, (-1), не равен нулю. Т.е. строки линейно зависимы. Ч.т.д.

Определение. Минором k-го порядка матрицы А размера mxn называется определитель k-го порядка с элементами, лежащими на пересечении любых k строк и любых k столбцов матрицы А. (k≤min(m,n)). .

Пример. , миноры 1-го порядка: =, =;

миноры 2-го порядка: , 3-го порядка

У матрицы 3-го порядка 9 миноров 1-го порядка, 9 миноров 2-го порядка и 1 минор 3-го порядка (определитель этой матрицы).

Определение. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение - rg A или r(A).

Свойства ранга матрицы .

1) ранг матрицы A nxm не превосходит меньшего из ее размеров, т.е.

r(A)≤min(m,n).

2) r(A)=0 когда все элементы матрицы равны 0, т.е. А=0.

3) Для квадратной матрицы А n –го порядка r(A)=n , когда А невырожденная.



(Ранг диагональной матрицы равен количеству ее ненулевых диагональных элементов).

4) Если ранг матрицы равен r, то матрица имеет хотя бы один минор порядка r, не равный нулю, а все миноры больших порядков равны нулю.

Для рангов матрицы справедливы следующие соотношения:

2) r(A+B)≤r(A)+r(B); 3) r(AB)≤min{r(A),r(B)};

3) r(A+B)≥│r(A)-r(B)│; 4) r(A T A)=r(A);

5) r(AB)=r(A), если В - квадратная невырожденная матрица.

6) r(AB)≥r(A)+r(B)-n, где n-число столбцов матрицы А или строк матрицы В.

Определение. Ненулевой минор порядка r(A) называется базисным минором . (У матрицы А может быть несколько базисных миноров). Строки и столбцы, на пересечении которых стоит базисный минор, называются соответственно базисными строками и базисными столбцами .

Теорема 2 (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (любой столбец) матрица А является линейной комбинацией базисных строк (столбцов).

Доказательство . (Для строк). Если бы базисные строки были линейно зависимы, то по теореме (1) одна из этих строк была бы линейной комбинацией других базисных строк, тогда, не изменяя величины базисного минора, можно вычесть из этой строки указанную линейную комбинацию и получить нулевую строку, а это противоречит тому, что базисный минор отличен от нуля. Т.о. базисные строки линейно независимы.

Докажем, что любая строка матрицы А является линейной комбинацией базисных строк. Т.к. при произвольных переменах строк (столбцов) определитель сохраняет свойство равенства нулю, то, не ограничивая общности, можно считать, что базисный минор находится в верхнем левом углу матрицы

А=, т.е. расположен на первых r строках и первых r столбцах. Пусть 1£j£n, 1£i£m. Покажем, что определитель (r+1)-го порядка

Если j£r или i£r, то этот определитель равен нулю, т.к. у него будет два одинаковых столбца или две одинаковых строки.

Если же j>r и i>r, то этот определитель является минором (r+1)-го порядка матрицы А. Т.к. ранг матрицы равен r, значит любой минор большего порядка равен 0.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

a 1j A 1j +a 2j A 2j +…+a rj A rj +a ij A ij =0, где последнее алгебраическое дополнение A ij совпадает с базисным минором М r и поэтому A ij = М r ≠0.

Разделив последнее равенство на A ij , можем выразить элемент a ij , как линейную комбинацию: , где .

Зафиксируем значение i (i>r) и получаем, что для любого j (j=1,2,…,n) элементы i-й строки e i линейно выражаются через элементы строк е 1 , е 2 ,…,е r , т.е. i-я строка является линейной комбинацией базисных строк: . Ч.т.д.

Теорема 3. (необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель n-го порядка D был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Доказательство (с.40) . Необходимость . Если определитель n-го порядка D равен нулю, то базисный минор его матрицы имеет порядок r

Т.о., одна строка является линейной комбинацией других остальных. Тогда по теореме 1 строки определителя линейно зависимы.

Достаточность . Если строки D линейно зависимы, то по теореме 1 одна строка А i является линейной комбинацией остальных строк. Вычитая из строки А i указанную линейную комбинацию, не изменив величины D, получим нулевую строку. Следовательно, по свойствам определителей, D=0. ч.т.д.

Теорема 4. При элементарных преобразованиях ранг матрицы не меняется.

Доказательство . Как было показано при рассмотрении свойств определителей, при преобразованиях квадратных матриц их определители либо не изменяются, либо умножаются на ненулевое число, либо меняют знак. При этом наивысший порядок отличных от нуля миноров исходной матрицы сохраняется, т.е. ранг матрицы не изменяется. Ч.т.д.

Если r(A)=r(B), то А и В –эквивалентные: А~В.

Теорема 5. При помощи элементарных преобразований можно привести матрицу к ступенчатому виду. Матрица называется ступенчатой, если она имеет вид:

А=, где a ii ≠0, i=1,2,…,r; r≤k.

Условия r≤k всегда можно достигнуть транспонированием.

Теорема 6. Ранг ступенчатой матрицы равен количеству ее ненулевых строк.

Т.е. Ранг ступенчатой матрицы равен r, т.к. есть отличный от нуля минор порядка r:

Каждую строку матрицы А обозначим е i = (a i 1 a i 2 …, a in) (например,
е 1 = (a 11 a 12 …, a 1 n), е 2 = (a 21 a 22 …, a 2 n) и т.д.). Каждая из них представляет собой матрицу-строку, которую можно умножить на число или сложить с другой строкой по общим правилам действий с матрицами.

Линейной комбинацией строк e l , e 2 ,...e k называют сумму произведений этих строк на произвольные действительные числа:
e = l l e l + l 2 e 2 +...+ l k e k , где l l , l 2 ,..., l k - произвольные числа (коэффициенты линейной комбинации).

Строки матрицы e l , e 2 ,...e m называются линейно зависимыми , если существуют такие числа l l , l 2 ,..., l m , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:
l l e l + l 2 e 2 +...+ l m e m = 0, где 0 = (0 0...0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных. Действительно, пусть для определенности последний коэффициент l m ¹ 0. Тогда, разделив обе части равенства на l m , получим выражение для последней строки, как линейной комбинации остальных строк:
e m = (l l /l m)e l + (l 2 /l m)e 2 +...+ (l m-1 /l m)e m-1 .

Если линейная комбинация строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю, т.е. l l e l + l 2 e 2 +...+ l m e m = 0 Û l k = 0 "k, то строки называют линейно независимыми .

Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые можно линейно выразить все остальные ее строки или столбцы.

Докажем эту теорему. Пусть матрица А размера m х n имеет ранг r (r(А) £ min {m; n}). Следовательно, существует отличный от нуля минор r-го порядка. Всякий такой минор будем называть базисным . Пусть для определенности это минор

Строки этого минора также будем называть базисными .

Докажем, что тогда строки матрицы e l , e 2 ,...e r линейно независимы. Предположим противное, т.е. одна из этих строк, например r-я, является линейной комбинацией остальных: e r = l l e l + l 2 e 2 +...+ l r-1 e r-1 = 0. Тогда, если вычесть из элементов r-й строки элементы 1-й строки, умноженные на l l , элементы 2-й строки, умноженные на l 2 , и т.д., наконец, элементы (r-1)-й строки, умноженные на l r-1 , то r-я строка станет нулевой. При этом по свойствам определителя вышеприведенный определитель не должен измениться, и при этом должен быть равен нулю. Получено противоречие, линейная независимость строк доказана.

Теперь докажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любую строку можно выразить через базисные.

Дополним рассмотренный ранее минор еще одной строкой (i-й) и еще одним столбцом (j-м). В результате получим минор (r+1)-го порядка, который по определению ранга равен нулю.

Понятия линейной зависимости и линейной независимости определяются для строк и столбцов одинаково. Поэтому свойства, связанные с этими понятиями, сформулированные для столбцов, разумеется, справедливы и для строк.

1. Если в систему столбцов входит нулевой столбец, то она линейно зависима.

2. Если в системе столбцов имеется два равных столбца, то она линейно зависима.

3. Если в системе столбцов имеется два пропорциональных столбца , то она линейно зависима.

4. Система из столбцов линейно зависима тогда и только тогда, когда хотя бы один из столбцов есть линейная комбинация остальных.

5. Любые столбцы, входящие в линейно независимую систему, образуют линейно независимую подсистему.

6. Система столбцов, содержащая линейно зависимую подсистему, линейно зависима.

7. Если система столбцов - линейно независима, а после присоединения к ней столбца - оказывается линейно зависимой, то столбец можно разложить по столбцам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно.

Докажем, например, последнее свойство. Так как система столбцов линейно зависима, то существуют числа не все равные 0, что

В этом равенстве . В самом деле, если , то

Значит, нетривиальная линейная комбинация столбцов равна нулевому столбцу, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. столбец есть линейная комбинация столбцов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ). Тогда из равенства

Получаем (\alpha_1-\beta_1)A_1+\ldots+(\alpha_k-\beta_k)A_k=o

последовательно, линейная комбинация столбцов равна нулевому столбцу. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости столбцов . Полученное противоречие подтверждает единственность разложения.

Пример 3.2. Доказать, что два ненулевых столбца и линейно зависимы тогда и только тогда, когда они пропорциональны, т.е. .

Решение. В самом деле, если столбцы и линейно зависимы, то существуют такие числа , не равные нулю одновременно, что . Причем в этом равенстве . Действительно, предположив, что , получим противоречие , поскольку и столбец - ненулевой. Значит, . Поэтому найдется число такое, что . Необходимость доказана.

Наоборот, если , то . Получили нетривиальную линейную комбинацию столбцов, равную нулевому столбцу. Значит, столбцы линейно зависимы.

Пример 3.3. Рассмотреть всевозможные системы, образованные из столбцов

Исследовать каждую систему на линейную зависимость.
Решение. Рассмотрим пять систем, содержащих по одному столбцу. Согласно п.1 замечаний 3.1: системы , линейно независимы, а система, состоящая из одного нулевого столбца , линейно зависима.

Рассмотрим системы, содержащие по два столбца:

– каждая из четырех систем и линейно зависима, так как содержит нулевой столбец (свойство 1);

– система линейно зависима, так как столбцы пропорциональны (свойство 3): ;

– каждая из пяти систем и линейно независима, так как столбцы непропорциональные (см. утверждение примера 3.2).

Рассмотрим системы, содержащие три столбца:

– каждая из шести систем и линейно зависима, так как содержит нулевой столбец (свойство 1);

– системы линейно зависимы, так как содержат линейно зависимую подсистему (свойство 6);

– системы и линейно зависимы, так как последний столбец линейно выражается через остальные (свойство 4): и соответственно.

Наконец, системы из четырех или из пяти столбцов линейно зависимы (по свойству 6).

Ранг матрицы

В этом разделе рассмотрим еще одну важную числовую характиристику матрицы, связанную с тем, насколько ее строки (столбцы) зависят друг от друга.

Определение 14.10 Пусть дана матрица размеров и число , не превосходящее наименьшего из чисел и : . Выберем произвольно строк матрицы и столбцов (номера строк могут отличаться от номеров столбцов). Определитель матрицы, составленной из элементов, стоящих на пересечении выбранных строк и столбцов, называется минором порядка матрицы .

Пример 14.9 Пусть .

Минором первого порядка является любой элемент матрицы. Так 2, , -- миноры первого порядка.

Миноры второго порядка:

1. возьмем строки 1, 2, столбцы 1, 2, получим минор ;

2. возьмем строки 1, 3, столбцы 2, 4, получим минор ;

3. возьмем строки 2, 3, столбцы 1, 4, получим минор

Миноры третьего порядка:

строки здесь можно выбрать только одним способом,

1. возьмем столбцы 1, 3, 4, получим минор ;

2. возьмем столбцы 1, 2, 3, получим минор .

Предложение 14.23 Если все миноры матрицы порядка равны нулю, то все миноры порядка , если такие существуют, тоже равны нулю.

Доказательство . Возьмем произвольный минор порядка . Это определитель матрицы порядка . Разложим его по первой строке. Тогда в каждом слагаемом разложения один из множителей будет являться минором порядка исходной матрицы. По условию миноры порядка равны нулю. Поэтому и минор порядка будет равен нулю.

Определение 14.11 Рангом матрицы называется наибольший из порядков миноров матрицы , отличных от нуля. Ранг нулевой матрицы считается равным нулю.

Единое, стандартное, обозначение ранга матрицы отсутствует. Следуя учебнику , мы будем обозначать его .

Пример 14.10 Матрица примера 14.9 имеет ранг 3, так как есть минор третьего порядка, отличный от нуля, а миноров четвертого порядка нет.

Ранг матрицы равен 1, так как есть ненулевой минор первого порядка (элемент матрицы ), а все миноры второго порядка равны нулю.

Ранг невырожденной квадратной матрицы порядка равен , так как ее определитель является минором порядка и у невырожденной матрицы отличен от нуля.

Предложение 14.24 При транспонировании матрицы ее ранг не меняется, то есть .

Доказательство . Транспонированный минор исходной матрицы будет являться минором транспонированной матрицы , и наоборот, любой минор является транспонированным минором исходной матрицы . При транспонировании определитель (минор) не меняется (предложение 14.6). Поэтому если все миноры порядка в исходной матрице равны нулю, то все миноры того же порядка в тоже равны нулю. Если же минор порядка в исходной матрице отличен от нуля, то в есть минор того же порядка, отличный от нуля. Следовательно, .

Определение 14.12 Пусть ранг матрицы равен . Тогда любой минор порядка , отличный от нуля, называется базисным минором.

Пример 14.11 Пусть . Определитель матрицы равен нулю, так как третья строка равна сумме первых двух. Минор второго порядка, расположенный в первых двух строках и первых двух столбцах, равен . Следовательно, ранг матрицы равен двум, и рассмотренный минор является базисным.

Базисным минором является также минор, расположенный, скажем, в первой и третьей строках, первом и третьем столбцах: . Базисным будет минор во второй и третьей строках, первом и третьем столбцах: .

Минор в первой и второй строках, втором и третьем столбцах равен нулю и поэтому не будет базисным. Читатель может самостоятельно проверить, какие еще миноры второго порядка будут базисными, а какие нет.

Так как столбцы (строки) матрицы можно складывать, умножать на числа, образовывать линейные комбинации, то можно ввести определения линейной зависимости и линейной независимости системы столбцов (строк) матрицы. Эти определения аналогичны таким же определениям 10.14, 10.15 для векторов.

Определение 14.13 Система столбцов (строк) называется линейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один отличен от нуля, что линейная комбинация столбцов (строк) с этими коэффициентами будет равна нулю.

Определение 14.14 Система столбцов (строк) является линейно независимой, если из равенства нулю линейной комбинации этих столбцов (строк) следует, что все коэффициенты этой линейной комбинации равны нулю.

Верно также следующеее предложение, аналогичное предложению 10.6.

Предложение 14.25 Система столбцов (строк) является линейно зависимой тогда и только тогда, когда один из столбцов (одна из строк) является линейной комбинацией других столбцов (строк) этой системы.

Сформулируем теорему, которая называется теорема о базисном миноре .

Теорема 14.2 Любой столбец матрицы является линейной комбинацией столбцов, проходящих через базисный минор.

Доказательство можно найти в учебниках по линейной алгебре, например, в , .

Предложение 14.26 Ранг матрицы равен максимальному числу ее столбцов, образующих линейно независимую систему.

Доказательство . Пусть ранг матрицы равен . Возьмем столбцы, проходящие через базисный минор. Предположим, что эти столбцы образуют линейно зависимую систему. Тогда один из столбцов является линейной комбинацией других. Поэтому в базисном миноре один столбец будет линейной комбинацией других столбцов. По предложениям 14.15 и 14.18 этот базисный минор должен быть равен нулю, что противоречит определению базисного минора. Следовательно, предположение о том, что столбцы, проходящие через базисный минор, линейно зависимы, не верно. Итак, максимальное число столбцов, образующих линейно независимую систему, больше либо равно .

Предположим, что столбцов образуют линейно независимую систему. Составим из них матрицу . Все миноры матрицы являются минорами матрицы . Поэтому базисный минор матрицы имеет порядок не больше . По теореме о базисном миноре, столбец, не проходящий через базисный минор матрицы , является линейной комбинацией столбцов, проходящих через базисный минор, то есть столбцы матрицы образуют линейно зависимую систему. Это противоречит выбору столбцов, образующих матрицу . Следовательно, максимальное число столбцов, образующих линейно независимую систему, не может быть больше . Значит, оно равно , что и утверждалось.

Предложение 14.27 Ранг матрицы равен максимальному числу ее строк, образующих линейно независимую систему.

Доказательство . По предложению 14.24 ранг матрицы при транспонировании не меняется. Строки матрицы становятся ее столбцами. Максимальное число новых столбцов транспонированной матрицы, (бывших строк исходной) образующих линейно независимую систему, равно рангу матрицы.

Предложение 14.28 Если определитель матрицы равен нулю, то один из его столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

Доказательство . Пусть порядок матрицы равен . Определитель является единственным минором квадратной матрицы, имеющим порядок . Так как он равен нулю, то . Следовательно, система из столбцов (строк) является линейно зависимой, то есть один из столбцов (одна из строк) является линейной комбинацией остальных.

Результаты предложений 14.15, 14.18 и 14.28 дают следующую теорему.

Теорема 14.3 Определитель матрицы равен нулю тогда и только тогда, когда один из ее столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

Нахождение ранга матрицы с помощью вычисления всех ее миноров требует слишком большой вычислительной работы. (Читатель может проверить, что в квадратной матрице четвертого порядка 36 миноров второго порядка.) Поэтому для нахождения ранга применяется другой алгоритм. Для его описания потребуется ряд дополнительных сведений.

Определение 14.15 Назовем элементарными преобразованиями матрицследующие действия над ними:

1) перестановка строк или столбцов;
2) умножение строки или столбца на число отличное от нуля;
3) добавление к одной из строк другой строки, умноженной на число или добавление к одному из столбцов другого столбца, умноженного на число.

Предложение 14.29 При элементарных преобразованиях ранг матрицы не меняется.

Доказательство . Пусть ранг матрицы равен , -- матрица, получившаяся в результате выполнения элементарного преобразования.

Рассмотрим перестановку строк. Пусть -- минор матрицы , тогда в матрице есть минор , который или совпадает с , или отличается от него перестановкой строк. И наоборот, любому минору матрицы можно сопоставить минор матрицы или совпадающий с , или отличающийся от него порядком строк. Поэтому из того, что в матрице все миноры порядка равны нулю, следует, что в матрице тоже все миноры этого порядка равны нулю. И так как в матрице есть минор порядка , отличный от нуля, то и в матрице тоже есть минор порядка , отличный от нуля, то есть .

Рассмотрим умножение строки на число , отличное от нуля. Минору из матрицы соответствует минор из матрицы или совпадающий с , или отличающийся от него только одной строкой, которая получается из строки минора умножением на число, отличное от нуля. В последнем случае . Во всех случаях или и одновременно равны нулю, или одновременно отличны от нуля. Следовательно, .


Top